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Abstract

Niniejsza praca przedstawia powstanie Hipotezy Oczekiwanej Uzytecznosci
wraz z jej ttem historycznym oraz opisuje jej wczesny rozwdj. Pierwszy rozdziat
prezentuje historie oraz rozwigzania Paradoksu Petersburskiego, ktory jest
blisko zwigzany z Teorig Oczekiwanej Uzytecznosci von
Neumanna-Morgensterna stanowigca gtowne zagadnienie pracy. W drugim
rozdziale, Teoria Oczekiwanej Uzytecznosci jest dogtebnie przeanalizowana w
oparciu o oryginalng publikacje von Neumanna-Morgensterna (Von Neumann
and Morgenstern, 1953). Ich aksjomatyzacja wraz z interpretacjg
poszczegblnych aksjomatéw konczy pierwszg czesé tego rozdziatu. W
nastepnej czesci, zaprezentowane zostaty podstawowe zagadnienia z zakresu
teorii decyzji, ktére wykorzystujg pojecie oczekiwanej uzytecznosci. W ostatniej
czesci, rozdziat trzeci poswiecony jest krytyce dotyczgcej teorii oraz analizie
paradoksu Allais’a wraz z opisem wspétczesnych psychologicznych przyczyn
tamania zatozen Teorii Oczekiwanej Uzytecznosci.

Stowa kluczowe: Hipoteza Oczekiwanej Uzytecznosci; Teoria Oczekiwanej
Uzytecznosci; Paradoks petersburski; Zaktad Pascala; Super-Paradoks
petersburski; Twierdzenie o} uzytecznosci oczekiwanej Von
Neumanna-Morgensterna; Paradoks Allais; Krzywa obojetnosci

Dziedzina nauki i technologii, wedtug wymagan OECD: 5.2 Ekonomia; 5.2
Biznes i Zarzgdzanie; 1.1 Matematyka stosowana



Abstract

The following thesis introduces the origin of Expected Utility Hypothesis with its
historical background and describes its early development. In the first chapter,
the history and solutions to St. Petersburg Paradox are presented, as it is closely
related to the von Neumann-Morgenstern Expected Utility Theory which is the
core notion of the thesis. In the second chapter, Expected Utility Theory is
thoroughly analysed basing on the original publication of von Neumann and
Morgenstern (Von Neumann and Morgenstern, 1953). Their axiomatisation
together with the interpretation of the axioms concludes the first part of the
chapter. Next, the basic notions of decision theory utilising the concept of
expected utility is presented. Finally, the third chapter is devoted to the
presentation of Maurice Allais’s critique of the theory and the analysis of his
paradox with the brief description of modern psychological reason for Expected
Utility Theory violations.

Keywords: Expected Utility Hypothesis; Expected Utility Theory; St. Petersburg
Paradox; Pascal's  Wager; Super-Petersburg Paradox; Von
Neumann-Morgenstern utility theorem; Allais Paradox; Indifference curves

Field of Science and Technology, as required by OECD: 5.2 Economics; 5.2
Business and Management; 1.1 Applied mathematics



Introduction

The subject of Expected Utility Hypothesis is very interesting due to its many
different dimensions, its interdisciplinary character and the fact that it is still a
topical subject in the field of modern economy. The beginning of the Expected
Utility Hypothesis dates back to the eighteenth century and since then it has
evolved from a mainly mathematical and to some extent philosophical notion to
an important concept researched by modern economists and psychologists
(Dutka, 1988) . Many different theories have arisen, taken advantage of, or
developed thanks to it. To mention a few of them: mathematical branches such
as probability theory or game theory; more connected with economics such as
decision theory and, last but not least, behavioural economics being an
interdisciplinary study of both economics and psychology. The Expected Utility
Hypothesis can be considered as a metaphorical bridge between mathematics
and economics. Its creation was an offspring of real life problems and
considerations and it has been raising questions since then. The best example
of topicality of the subject is Prospect Theory, created in 1979 (Kahneman and
Tversky, 1979), and developed in 1992 by Daniel Kahneman and Amos Tversky
and later Cumulative Prospect Theory (CPT) developed by Kahneman, for which
he was given a Noble prize in economics in 2002.

The aim of the following thesis is to present in detail the historical
background and the origin of the Expected Utility Hypothesis starting from the
St. Petersburg Paradox and Pascal’s Wager, through the creation of axiomatic
basis for Expected Utility Theory developed by John von Neumann and Oskar
Morgenstern, followed by the brief analysis of Maurice Allais’s critique of von
Neumann’s and Morgenstern’s achievements (Allais, 1953), ending with
thorough presentation of Allais Paradox and its contemporary psychological
implications (Igbal, 2013). The work is focused on the early sources and key
publications concerning the subject (Von Neumann and Morgenstern, 1953)
(Allais, 1953) (Tversky, 1975) (MacCrimmon and Larsson, 1979). Through the
historical background and detailed step-by-step analysis of the basics of the
aforementioned notions, it aims to give a solid basis for further research and
understanding of contemporary theories which are based or related in any way
to the Expected Utility Hypothesis.

The thesis is divided into three main chapters. In the first chapter, the
historical background, the origin and the circumstances of publication of the St.
Petersburg Paradox are described. The chapter ends with a presentation of
solutions to the paradox and its relation to the creation of Expected Utility
Hypothesis. The second chapter is focused on the creation process of axioms



and an early beginning of Expected Utility Theory with the detailed analysis of
the most important publication regarding the theory i.e. Theory of Games and
Economic Behavior by von Neumann and Morgenstern (Von Neumann and
Morgenstern, 1953). Furthermore, in the second part of the second chapter, the
interpretation of the axioms is followed by the analysis of decision theory with
the emphasis put on decision making under certainty and uncertainty with the
application of Expected Utility Theory notions. In the last chapter, the critique of
Expected Utility Theory by one of its fiercest opponents Maurice Allais is
presented. This part is based on his famous article "Le Comportement de
I'Homme Rationnel devant le Risque: Critique des Postulats et Axiomes de
I’Ecole Americaine"” (Allais, 1953). It is followed by the description of the paradox
itself with the help of indifference curve analysis (Machina, 1987). The thesis is
concluded with the description of the most common psychological causes of
Expected Utility Hypothesis violations.

Although the subject of the thesis has not been covered during the master
degree studies, it is closely related to many subjects and problems connected
with economics and management. Despite the fact that some notions such as
marginal utility of money or the method of indifference curves analysis were
introduced, they can merely be considered as an elementary introduction to
some more advanced problems described in this work. Therefore, the process of
writing the thesis was impeded. It required additional preparation and
self-learning in order to get to know particular notions considered as elementary
in the researched field. Due to the aforementioned reasons, the theoretical
character of the work was chosen intentionally. The thesis presents notions on
which the literature is either limited or unavailable in Poland (recent publication
which is easily available (Dobrowolski, 2014)). Hence, the work is aimed to be a
comprehensive introduction of these notions, which is available in singular piece
of writing. Since the scope of the work is wide, any additional empirical research
would exceed the size of a master thesis.



1 St. Petersburg Paradox

1.1 Introduction

Over three hundred years ago, on 9th September 1713, a paradox which
significantly changed the view on money utility was created. What might have
been called an ordinary puzzle at that time is nowadays referred to as the St.
Petersburg Paradox and is still discussed and analysed in many scientific
publications and literature (Weber, 1998) (Joyce, 2011) (Seidl, 2013). Three
years ago, on the 300th anniversary of the paradox, Christian Seidl published an
article "The St. Petersburg Paradox at 300", which is a great contemporary
overview of the problem with a solid mathematical analysis (Seidl, 2013).

While most of the historical figures connected with the birth of the
paradox were mathematicians, the paradox had much wider impact on the
world’s perception and mathematics itself. Not only did it create discussion in the
branches of mathematics such as probability theory, statistics and later game
theory, but also caught the attention of philosophers and more recently
economists all around the world. However, perhaps most importantly, it gave rise
to the expected utility theory and changed the view on mathematical expectation
in relation to the real world.

In the following chapter, the history of the St. Patersburg Paradox will be
presented together with the details regarding its publication. Furthermore, the
most common solutions with examples will be discussed prior to the description
of crucial input of the paradox to the creation of Von Neumann-Morgenstern utility
theory.

1.2 Historical background and publication of the St.
Petersburg Paradox

1.2.1 Mathematical views and believes prior to the paradox

Probability theory which is perhaps considered the "most applicable" branch of
mathematics to the real world by laymen, arose in the seventeenth century due to
the popularity of gambling and games of chance. At that time in France, among
aristocrats one of the most popular ways of spending their free time was gambling.
One of them had a great impact on development of probability theory due to his
immense pragmatism. His name was Antoine Gombaud, also known as Chavalier
de Mere, a French writer, who asked two of the most famous mathematicians of
his time, Pascal and Pierre de Fermat, for a mathematical guidance in gambling
(Dutka, 1988). This request resulted in later correspondence between the two
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mathematicians regarding gaming problems. What is particularly interesting, the
term "probability" was never explicitly used yet.

The main suggestion Pascal and Fermat made to Gombaud was to use
the expected value of the winnings. This was a very important remark since it
gave rise to a viewpoint on making rational decisions when faced with a risk
(events probable to unknown extent) by the use of mathematical expectation i.e.
expected value. The Pascal-Fermat correspondence focused mainly on two
problems presented by Gombaud which were already known to the gamblers of
that time. The former concerned the problem of fair division of stakes in case of
several players taking part in an interrupted series of games of chance. The
latter, concerned the problem of obtaining the given sum within the given number
of throws of a die and its mathematical assessment of a player's advantage.
Even though Pascal and Fermat did not use the term "probability", their
descriptions of terms concerning anticipated profits or loses can be interpreted
with the use of modern notions of mathematical expectation.

The Pascal-Fermat correspondence was followed by the work of Christiaan
Huygens who learnt about it while visiting Paris in 1655. Regrettably, he did not
have a chance to meet either of two great mathematicians. After he returned
to Holland, he wrote an important tract on probability in Dutch, which was later
translated into Latin. The Latin version was well received by the mathematicians
of that time and as a result was translated into many other languages. Huygens
in his work focused mainly on the concept of expected value, however, without
formally defining it. Instead, he used descriptive terms such as "the worth of the
chance" or "it is worth to me". Moreover, the equivalent of modern fair game can
be found in his work, which is characterised by the same expectation of profit for
each player taking part in it. Finally, what is worth mentioning, the fact is this tract
remained the only widely available work on probability for almost half a century.

Naturally, the probability theory did not arise only due to the interest in
gambling and games of chance. During the seventeenth century there was a
substantial growth in many sectors involving large sums of money (payouts) and
the probability of some related contingent events occurring. To list some of them,
starting from the ones that are the most related to gaming problems, there are
national lotteries, any kind of insurance policies (life, entrepreneurial, marine)
or tontineg} The knowledge of conclusions from Pascal-Fermat correspondence

TTONTINE - was a system of life insurance named after an Italian banker Lorenzo Tonti born at
Naples in the beginning of the 17th century. He settled in France about 1650. In 1653 he proposed
to Cardinal Mazarin a new scheme for promoting a public loan. His suggestion was to subscribe
a total of 1,025,000 livres in ten portions (102,500 livres each) by ten classes of subscribers. The
division of the classes was as follows: the first class consisted of persons under 7, the second
of persons above 7 and under 14, and so on to the tenth, which consisted of persons between
63 and 70. The annual fund of each class was to be divided among the survivors of that class.
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and rising popularity of Christian Huygens tract on probability in the second part of
the seventeenth century resulted in first attempts to incorporate the newly formed
idea of quantitative probability to other areas such as demographics, annuities
and abovementioned insurance services. The forthcoming successes in many
areas connected with applying the notions of early probability theory into the real
life problems resulted in further interest and development of that field.

1.2.2 Pascal’s Wager and the first occurrence of "infinite gain" concept

Prior to the discussion about the origin of St. Petersburg Paradox itself, there is
one more significant event which should be mentioned due to one important
correlation. Aforementioned mathematician Blaise Pascal, after his second
religious conversion in November 1654, mostly abandoned research in the field
of mathematics and physics and focused more on theology and philosophy.
Pascal was never a supporter of the idea of proving God’'s existence as he
believed in superiority of believe over reason - "the heart has its reasons which
reason does not know". However, he created a very interesting and provoking
argument especially for non-believers in form of a wager. Nowadays refereed to
as Pascal's Wager, it is one of the most famous arguments in philosophical
theologyP|

The wager is based on the Pascal’s assumption that one either believes in
God or not, without any other alternative. Hence, it can by regarded as a lottery
with two possible "choices" and two possible "cases" with unknown probabilities.
Let E be the case associated with God’s existence and p the probability of the
case F occurring (the wager assumes that p is positive - it might be infinitesimal
but not equal to zero). Then, let nE denote the case of God’s non-existence.
The two possible choices are named as follows: B - to believe; and nB - not to
believe. Having established the notation, a simple table summarizing the wager
and potential "utilities" (in the sense of outcomes and gains associated with them)
can be made, where w1, us, us and u, denote utilities for every one of four possible
outcomes (Tabarrok, 2000).

E | nkE
B 00 | up
nB | uy | us

Table 1: Pascal’s Wager. Source: Own compilation.

Furthermore, on the death of the last individual the capital was to fall to the state.

2The aim of the following notation is to present the Pascal’s Wager in the form of mathematical
notation in accord with probability and game theory in order to highlight the aspect of wager’s
infinite gain.



Pascal argued that if one accepts God’s existence and believes, then he
might expect eternal salvation while not loosing anything in his life. Hence, the
expected utility of such case is infinite. On the other hand, if one rejects God’s
existence and ultimately turns out to be wrong, than all the life’'s work might be
lost. Regardless of the case, it might be assumed that each and every utility level
u1, us and us, apart from the case of God’s existence and actual believing, is finite.
Having made this assumptions, it is easy to calculate the expected utilities of the
two choices: B - believing in God; and nB - not believing.

E(B)=pxoo+ (1 —-p)xu =00
EnB)=pxus+ (1 —p) X uz =1uy

Even though the numerical values of utility levels u;, u,, us and uy are unknown
and impossible to calculate, it is certain that they are finite. Hence:

uy K 00 < E(nB) < E(B)

According only to the calculated expected utility, every rational human being
should believe in God.

Although the wager is first and foremost the problem considered by
philosophers and theologians not mathematicians, it outlines the possibility of
infinite gain in a game of chance, which is a main problem of the St. Petersburg
Paradox.

1.2.3 Nicolas Bernoulli’s five problems to Pierre Rémond de Montmort

The problem of St. Petrsburg Paradox was created by Nicolas Bernoulli (1687
- 1759), however, in a different form from the one known today. Nicolas was a
nephew of the famous Jacob Bernoulli (1655 - 1705) - the creator of a treatise
on probability theory, which is considered a milestone in this filed. The work was
mainly written in 1690s, nevertheless, it was left unfinished for Jacob’s death in
1705. Nicolas Bernoulli dedicated himself to publication of his uncle’s unfinished
manuscript, which he realised in 1713. Even though he became a professor of
jurisprudence in Basel, he did not abandon the interest in mathematics.

The first version of the paradox can be found in a letter sent by Nicolas
Bernoulli to French mathematician Pierre Rémond de Montmort (1678-1719).
Bernoulli, who had a long correspondence with de Montmort, sent him a letter
with five problems on 9th September 1713. Later, they were published in de
Montmort’s second edition of his famous book on games of hazard.
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Only the last two problems (the fourth and the fifth) are important for St.
Petersburg Paradox considerations.
The fourth problem
The fourth problem was described as follows:

Player A promises to give a crown to player B if: with an ordinary die he gets six
points on the first throw, two crowns if he gets the six on the second throw, three
crowns if he gets this point on the third throw, four crowns if he gets it on the
fourth, and so on; B’s expectation is required.

A solution to this problem is easily obtainable by the use of expected value EX =
>, piz;. The expected value for discrete cases (such as consecutive throws of a
die) is defined as the sum of products consisting of values of a random variable (in
our case payoffs) and associated probabilities. Let us remark that if the random
variable X is infinite but countable, then n can be replaced with oo provided that
such a sum converges absolutely.

The probability of getting a "6" on the first throw is straightforward and
equals é The probability of getting "6" on the second throw (given that "6" was
not obtained during the first roll) is equal to 2 - . The probability of getting "6" for
the first time on the third throw is equal to 2 - 2 - ¢. From the above examples we
can clearly see and create the general formula for probability of tossing "6" for the

first time on the n'" throw.
55 1 (5\"' 1 1 (5\""
6 6 6 \6 6 6 \6

When it comes to the values (payoffs) associated with the probabilities, the
formula is very simple. As player A is to give player B number of crowns equal to
the number of the throw on which "6" is thrown for the first time, it is simply
denoted by n. Hence, the expected value can be created. Due to the fact that
theoretically "6" can be tossed for the first time as late as we can imagine, the
sum in expected value goes to infinity, which makes it a series. Summarising
above explanations, the expected value for the fourth problem is created in the

|
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following wayf;
=1 /5\"" 1o /5\"" I /5\"!
—| = ‘n=- - n == - 1.1
;6(6) " 6%(6) " 6%”(6) (.1
Now, let us focus on calculating the sum of the series in the above equation (1.1

This step requires the use of the generalised formula of the geometric series and
differentiation of power series:

S-S = (S0) 2 (2) - s

n=0
The first two transitions of the above equation are straightforward and only use
the basic principles of differential calculus such as the sum rule in differentiation
(taking advantage of linearity of differentiation) (Jakubowski and Sztencel, 2011).
The third transition, indicated in the above equation by the symbol ~, utilises the
well-known sum of the geometric series. In order to explain how this sum was
obtained, we need to recall the simplified definition of geometric series.

Definition 1 (Geometric series)

A geometric series ), a, is a series which terms form a geometric progression.
The ratio of two consecutive terms of such series a,.1/a, IS constant. Hence,
a geometric series can be represented using only two terms: common ratid|
r = a,41/a, and the first term of the series denoted by a. When considering
the simplest case of common ratio equal to a constant x, the terms a,, have the
following form: a,, = apz™. Letag = 1, than the geometric sequence {a,}, with
constant |x| < 1 is given by the sum:

Sm:Zan:Zx” (1.2)

n=0 n=0

Having defined the geometric series we can now resume our explanation of the
transition indicated by ~. Let us notice that:

SmEZ$”:1+a:+a:2+...+a:m (1.3)
n=0

We are about to perform several operation on the above equation in order to prove

3Please note that on the second transition in the equation below, the fraction % can be taken
away from the series (infinite sum) due to the fact that it is a constituent independent from n. The
last transition is made purely for aesthetic reason to make it easier to see the solution of summing
the series later on.

4Common ratio is usually denoted by the letter r in the literature, however, for the sake of

consistency the letter = will be used.
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the transition ~. Let us multiply both sides of the equation by x, which results
in:
Sy =x 4+ + a3+ .. 4™ (1.4)

Now we are going to subtract equation[1.4]from equation [1.3] which gives:
(1—2)Sm = (142 +2°+...+2")—(z+ 2>+ 2>+ ...+ 2™ =1-2™" (1.5)

Hence, the sum S,, can be presented in the following way:
- 11—z
Sm=» 2" = — (1.6)

Finally, now it is sufficient to notice that for —1 < z < 1 and m — oo the sum
converges and gives:

S

Soo:ix”: ! (1.7)
n=0

1—2
]
Ultimately, it suffices to use the result of the above proof and previous
considerations to calculate the expected value for the fourth problem:

IS 5\ 11
e (3) -3 5y =S

(1-3

The fifth problem
The fifth and the last problem was described as follows:

The same is required if player A promises player B to give the crowns in the
progression:

a) 1,2,4,8,16,... or
b) 1,3,9,27, ... or
c) 1,4,9,16,25,... or
d) 1,8,27,64, ...

instead of 1, 2, 3, 4, 5, ... as before.

The above progressions can be expressed analogically to the fourth problem i.e.
a) 1,2,4,8,16,... +— a, =2""!1 = %Zzozl 2n—1(%)n—1
b) 1,3,9,27, ... — a, =31 = %Zzozl 3n—l(%)n—1

13



c)1,4,9,16,25,... a, = n? = e nr()n!

[« ¥

d) 1,8,27,64,... +— a, =n® = FY nd(E)!

Solving the fifth problem is not that easy due to the fact that expected value for
the first two cases (a] & [p) does not exist. It can be explained by noticing that the
first two series i.e. ¢> o 2" 1(2)" ' and > > 3"7'(2)"! are divergent. On
the other hand, for the last two series (d & [d) ie. §>>° n?(2)"! and
> n?(2)" !, expected value can be obtained as these two series are
convergent ]

P. R. de Montmort did not find Bernoulli’s problems interesting and in reply
to the author he suggested that these problems can be easily solved by the
method of summation of the seriesﬂ developed by aforementioned Jacob
Bernoulli - Nicolas’s deceased uncle (Seidl, 2013). On 20th February 1714
Bernoulli sent another letter with his solutions of the problems. For the fourth
problem he correctly summed the convergent series achieving the solution equal
to 6. However, when he tried to apply the method to the first case of the fifth
problem he achieved the result equal to —}l in effect summing the divergent
series. He considered it as a contradiction, which resulted in some fallacious
attempts to solve it. The contemporary viewpoint on summation of the series
stands that a series ) ay is said to be convergent when the sequence Sy of
partial sums has a finite limit. Otherwise, if the limit of Sy is infinite or does not
exist, the series is said to be divergent. When the limit of partial sums exists, it is
called the sum of the series (3", a, = limy_oo Sy = limy_,o0 Zg:o a,). Hence,
the divergent series cannot be summed as Bernoulli did. It is crucial to point out
that the contemporary view on the sum of infinite series (sums of infinite series
regardless of its convergence are treated as mathematical conventions’) was
not developed until the second part of the nineteenth century.

Despite the incorrect tries of solving the contradiction, the conclusion
made by Nicolas is important for further development of the problem. He argues
that the fair value of expectation does not have to be the sum of constituent
expectations as some events with very small probability should be disregarded
and treated as null. Nevertheless, it is important to realise that however
insignificant the probability may seem, the amount associated with it might alter
the final result significantly. This is a very important concept which will be

5The proofs of both divergence and convergence of the series will not be discussed in this
work as they do not contribute significantly to the main problem of the thesis.

6The method will not be described here as it is not crucial for understanding the main problem
of the chapter. For further reading on the subject please refer to: Bernoulli Summation Formulas,
Bernoulli Numbers, Euler-Maclaurin Summation Formula.

”A mathematical convention is a fact, name, notation, or usage which is generally agreed upon
by mathematicians. An example of mathematical convention can be a factorial of zero i.e. 0! = 1.
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discussed in greater detail in the following chapters. Bernoulli and many of his
successors regarded the paradox as a discrepancy between widely accepted
use of expected value for valuation of games of chance and the actual
anticipation of the return in the game. In the final reply to Nicolas, de Montmort
accepted his argument but tended to support the validity of expected value.
However, he suggested in diplomatic way that the only qualified person for
further research in this matter was Bernoulli himself. Despite Nicolas’s trials to
keep de Montmort engaged with the development of the problem, the latter did
not contribute significantly before he passed away in 1719.

A very important and meaningful remark on the matter was made by J.
Dutka (1988) who concluded that the fourth and the fifth problem developed by
Nicolas Bernoulli led to a comparison of formal mathematical results and the
actual human behaviour in described situations. "The significance of the results
cannot simply be judged on the basis of whether they are correct deductions
from certain initial mathematical assumptions. If the results are to be compared
with the actual behaviour of people, the initial mathematical assumptions must
also be examined to determine whether they are meaningful and valid in the real
world.” (Dutka, 1988). He also pointed out that with regard to the fourth problem
two aspects should be considered: the ability of Player A to pay any sum of
money which Player B wins, and the possibility of unlimited number of throws of
a die. Furthermore, the fifth problem complicates the considerations even more
as it introduces the concept of solution involving "infinite mathematical
expectation" which was seen by Nicolas Bernoulli and most probabilist of the
eighteenth century as legitimate mathematical concept. All of the above resulted
in a deeper consideration of the term "infinity" itself.

In the seventeenth and eighteenth centuries the term ‘“infinity" was

associated with a number, however, larger than any finite number one could
think of. This had been a prevailing notion until it was replaced in the nineteenth
century when the idea of "infinity" was introduced as a kind of limiting process in
mathematical analysis. The former view was contested by i.a. Carl Friedrich
Gauss (1777-1855) and Augustin Louis Cauchy (1789-1857). In a frequently
quoted letter to the astronomer Heinrich Christian Schumacher (1780-1850) on
12th July 1831, Gauss contested the prevailing view on the term "infinity":
"... | protest ... against the use of an infinite quantity as an actual entity, which
is never allowed in mathematics. The infinite is only a fagon de par/eﬁ in which
one really speaks of limits to which certain ratios come as near as desired, while
others are allowed to increase unrestrictedly."”

Having established the time-line and views on important mathematical

8From French "fagon de parler" means - "way of speaking"”, "manner of speech”
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notions, the analysis of the Nicolas Bernoulli’s fifth problem and its transition to
St.  Petersburg Paradox can be resumed. The problem presented to de
Montmort can be presented from more general but at the same time formal
viewpoint. Let the required expectation be expressed by the use of divergent
infinite series of finite expectations:

> " p(n)a(n) (1.8)

The formula above is constructed in such a way that: p(n) represents the
probability of winning on the n'" trial; a(n) represents the amount won; where
n = 1,2,3,...,{a(n)} is an increasing sequence, while {p(n)} is a decreasing
sequence.

In reference to this formula, Nicolas Bernoulli suggested a substitution of
sequence {p(n)} with another sequence {p(n)} such that the newly created
series:

" pln)a(n)

converges. The idea behind the sequence {p(n)} is to replace very small
probabilities with zero. In fact it means "cutting the tail" of the sequence {p(n)}
for n exceeding some value m.

1.2.4 Gabriel Cramer’s contribution to the problem

The form of the paradox which is known nowadays was developed by the Swiss
mathematician Gabriel Cramer, who had the biggest impact on the development
of the problem in its early stage. On the letter to Nicolas Bernoulli from the 21st
of May 1728, he suggested an alternative solution to the problem described by
the formula[1.8] In contrary to what was proposed by Nicolas, Cramer suggested
an equivalent solution to substitute the sequence {a(n)} with another sequence
{a(n)} such that the series

> p(n)a(n) (1.9)

converges. However, one of the most crucial insights in the letter was the
simplification of the Nicolas’s fifth problem. Cramer suggested replacing the
six-sided die with a two-sided (fair) coin and exchange the roles of Player A and
Player B. As a result, if player A tosses the first head on the n'” trial after having
tossed n — 1 consecutive tails, he is given 2"~! crowns by the player B, where
n=1,2,3,.... It can be noticed that so far Player A’s expectation can be formally
expressed by the series[1.8/on page [16]

16



Having presented Cramer’s simplification, the contemporary version of St.
Petersburg Paradox later published by Daniel Bernoulli (described in detail in the
following chapter) can be quoted:

Peter tosses a coin and continues to do so until it should land "heads" when it
comes to the ground. He agrees to give Paul one ducat if he gets "heads" on the
very first throw, two ducats if he gets it on the second, four if on the third, eight if
on the fourth, and so on, so that with each additional throw the number of ducats
he must pay is doubled. Suppose we seek to determine the value of Paul’s
expectation.

What Cramer considered a paradox was that, basing on calculations,
Player A should pay Player B an infinite sum of money to play the game. As he
argued, that appears to be an absurd since no reasonable person would pay 20
crowns to enter the game. His further reasoning has been quoted many times in
the literature considering this subject:

"What is the reason for this difference between the mathematical calculation and
the ordinary valuation? This is because mathematicians value money in
proportion to the amount, wheras reasonable people value it in proportion to the
use they can make of it."

The very similar reasoning was expressed by Daniel Bernoulli in reference to the
version of the paradox quoted above.

"... Although the standard calculation shows that the value of Paul’s expectation
is infinitely great, it has ...to be admitted that any fairly reasonable man would
sell his chance, with great pleasures, for twenty ducats."

Another remark, however a bit harsh, was made by a friend and correspondent of
Cramer - a French naturalist G. L. L. Buffon (1707-1788).

"The miser is like the mathematician - both value money by its numerical quantity.”
All this reasoning laid the ground for the later creation of expected utility
hypothesis.

Cramer continued his deliberations on the problem by pointing out that
what makes the mathematical expectation infinite is the possibility of winning
enormous amount of money if the player does not toss a "head" until very late
trial e.g. 100" or 1000"* toss. Furthermore, he argued that for a sensible man
neither should it be worth more nor yield more pleasure than if the amount to be
won was limited by 10 or 20 million crowns. Later, basing on this assumption, he
calculated the expectation in line with the series on page (16| for the limited
amount of 2** = 16, 777,216 crowns. It is assumed that either Player A accepts
that the maximum amount to be won is equal to 16,777,216 crowns (the payoff in
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case of tossing the first head on the 25 trial) or that the capital of Player B is
limited to this amount. Therefore, the sum of the series [1.9] (which is now limited)
is obviously finite and equals 13 (it is a pure numerical value without a unit).
Cramer called his result a "moral value of wealth", which by modern economists
would be called utility of money. He had a very original view on that matter and
was one of the first to formalise this concept.

Gabriel Cramer considered the achieved result as too big. Hence, he
made an attempt to further decrease the "moral value of wealth" by suggesting
an alternative assumption. He made a remark that even though 100 million
yields more pleasure than 10 million, it is certainly not ten times as much. That is
why, he suggested that moral value of wealth should be a square root of
mathematical quantity. However, he stated that this is not the equivalent of the
actual stake of the game since it should not be equal to moral expectation but
rather equal to the regret for the loss of expected pleasure. This remark is of a
great importance for economists as it reflects the notions of "principle of
maximum regret", which was suggested in decision and economic theory more
than two centuries later.

Nicolas Bernoulli did not agree with Gabriel Cramer’s arguments. He still
considered the utility from infinite sum as greater than utility gained from finite,
however, very large sum. Moreover, he stated that arguments presented by
Cramer did not explain why mathematical expectation was different from the
ordinary estimate. He supported his believe by stating that a pragmatic view
does not take into consideration the magnitude of potential winnings. Hence, a
very small probability of wining a large sum is regarded as impossible but, on the
other hand, the very large probability of wining a small sum is considered as
almost certain. In Nicolas’s view these two probabilities do not counterbalance
each other in ordinary estimation. Gabriel Cramer did not accept Bernoulli’s
arguments either and it appears there was not further correspondence on that
matter between the two of them.

What is particularly interesting from the modern viewpoint is the fact that
judging from Nicolas Bernoulli’s reasoning he would have never taken part in any
kind of lottery which involved only small probabilities of winning huge amounts of
money. Funnily enough, this was a view considered as legitimate more than three
hundred years ago, while nowadays a considerable part of the society takes part
in such lotteries on every day basis. Personally, | consider this fact as a proof that
problems of decision theory and evaluation of risk and utility are still up to date
and need to be researched further.
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1.2.5 The origin of the name of the paradox and its first publication

After receiving Cramer’s simplified version of his problem, Nicolas Bernoulli
decided to familiarise with it his cousin Daniel Bernoulli, who was at that time a
professor of mathematics at the University of St. Petersburg. On 27th October
1728 Nicolas sent to his cousin the fourth and the fifth problem (in Cramer’s
simplified version). At first Daniel Bernoulli was not interested in them and
regarded them as very easy, though a bit paradoxical. In his reply he stated that
there is a little probability that the game would last longer than 20 or 30 throws.
Nicolas rejected his cousin’s argumentation, which made Daniel reconsider the
problem. Later, Daniel Bernoulli sent to Nicolas a memoir, which shed a new
light on the problem. Daniel suggested that the initial fortune of a player should
also be considered in order to determine his expectation. In regard to Daniel’'s
suggestion, Nicolas believed that his ideas combined with Cramer’s and Daniel’s
insights might lead to a more accurate way of disregarding small probabilities.

The name of the paradox is strictly connected with its publication and the
circumstances. There seem to be no publications dated before 1738 on the
problem apart from the statement in de Montmort's book about his
correspondence with Nicolas Bernoulii in 1713. In 1731 Daniel Bernoulli
submitted his memoir for publication in the Commentarii to the St. Petersburg
Academy, where it was officially published seven years later in 1738. Thus, the
St. Petersburg Paradox has derived its name from the place of its first ever
publication.

Daniel in his memoir introduces very important hypothesis which is the
basis of theory of marginal utility widely used in modern economy. He suggests
that in order to determine the value of the risk for a particular individual the
mathematical expectation of contingent events is not sufficient. Moreover, he
implies that in reality the possibility to win a given amount of money is not
equally important to different people, but is rather relative to their current wealth.
He continues with formulating the following hypothesis:

"Now it is highly probable that any increase in wealth, no matter how
insignificant, will always result in an increase in utility which is inversly
proportional to the quantity of goods already possessed.”
The above hypothesis can be denoted in mathematical terms as a following
derivative:

dy = kd—x

T

where dy indicates an increase in utility for an individual; = denotes his present
wealth and dx receiving additional amount of money; and k& which is the
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proportional factor (we demand k£ > 0) subjective for every individual. In order to
find y the above formula should be integrated as follows:

gtk [ pm® (1.10)

e a

where a (we demand a > 0) denotes the initial fortune.
Now let a be an initial fortune of a person who plays the game in which the
amount a,, can be won with probability p, forn =1,2,3,...and > 7  p, = 1. His
mathematical expectation is straightforward and equal to: > ° | p,a,. However,
according to Bernoulli’s hypothesis, as he called it "mean utility", it is equal to:

Frfe

assuming the series converges.
It is important to mention that Bernoulli's mean utility was later called "moral
expectation" by Pierre Simon de Laplace (1749-1827).

Daniel’s theory of moral expectation was rejected by Nicolas, who insisted
that the stakes of the game of chance must be objectively determined. He noticed
that if Daniel’s hypothesis was applied to the problem, each player would pay
different stake to Peter to enter the game while Peter’s potential risk remained the
same.

1.3 Solutions and impact on the development of Expected
Utility Theory

The moral expectation theory was accepted by the majority of mathematicians of
the late eighteenth and early nineteenth centuries. However, one of the notable
opponents of it was Jean Le Rond d’Alembert (1717-1783). Regardless of the
opposition, the theory gained even wider recognition with the publication of the
monumental treatise of Laplace, who further developed Bernoulli’s idea.
Nevertheless, during the nineteenth century, the theory lost some of its initial
attention and was only cursorily mentioned or even rejected by some French
mathematicians such as Poisson, Bertrand or Poincare. What is more, Bertrand
even satirised the theory by creating an imaginary dialogue between two of
Bernouli’s students.

Since the creation of the paradox, there have been numerous attempts to
solve it. While until 1950’ it had mainly attracted attention of mathematicians,
later it became the subject of discussion among economists or even some
philosophers and social scientists. Probably the most common solution was the
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idea of restricted game achieved by limiting the bankers capital, and as a result,
reducing the number of possible tosses of a coin. Many scholars of that time
who wrote on the St. Petersburg Paradox shared the view that this assumption
made the game possible in the real world. However, D’Alembert raised objection
to this solution. He was not the only opponent as Bertrand made two
suggestions concerning potential insolvency of the banker. The former idea was
to substitute the object of the game with even smaller objects of greater quantity
i.e coins with grains of sand, grains of sand with hydrogen molecules and so on,
in order to diminish the fear of banker’s insolvency. The latter idea, later partially
accepted by the famous economist John Maynard Keynes (1883-1946) and
others, was to give a player a note confirming any potential debt in case of
banker’s insolvency. It is very intriguing and important to mention that the matter
of the player's view on such a solution (and potential consent) was not
mentioned. The matter was developed further by Paul Samuelson and Lloyd
Stowell Shapley - both a Noble-prize winners in Economic Sciences. The latter
was a great mathematician and economist, known for Shapley value and his
contribution to the game theory, who passed away on the 12th of March 2016 at
the age of 92.

Another approach to the paradox’s solution was given by Buffon, who
focused on disregarding the negligible probabilities (the initial idea regarding this
solution was presented by Nicolas and Daniel Bernoulli and was mentioned
earlier). In order to establish a proper threshold for neglecting the probabilities,
Buffon presented an interesting example which justified his reasoning. He stated
that according to mortality tables of his times, the odds of a healthy 56-year-old
man dying within twenty-four hours were 1 to 10189. Hence, any event with a
probability of occurrence 1/10000 or less might be disregarded. The argument of
disregarding the probabilities was accepted by aforementioned D’Alembert,
however, without specifying the threshold. Another famous mathematician Emile
Borel (1871-1956) was also in favour of such a solution and in one of his books
he determined some thresholds which, according to him, were appropriate in
various scales - human, terrestrial, cosmic, etc.

Gabriel Cramer and Daniel Bernoulli's concave transformations of the
winnings are considered the first "solution" of the St. Petersburg Paradox. As it
was already mentioned, Cramer’s suggestion was to apply square root in order
to transform the winnings, while Daniel Bernoulli suggested applying the natural
logarithm. Additionally, the latter also incorporated the assumption that the utility
of winnings is inversely proportional to the player's wealth. As indicated by the
equation number [1.10] on page [20] it is easy to notice that the larger the player’s
wealth is, the smaller his marginal utility of winnings is. Secondly, additional
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constant winnings have decreasing marginal utility and finally, the utility of gain
falls short of the (absolute) disutility of an equivalent amount of money lost
(Seidel, 2013). It is important to point out that all of the above assumptions are
in accord with modern economics. The hypothesis was later proved by Weber
(1834) and Fechner's (1860) experimental investigations on psychophysics.
Furthermore, Leonard Jimmie Savage (1917-1971), the creator of Subjective
Expected Utility Theory said that "To this day, no other function has been
suggested as a better prototype for Everyman’s utility function". Concluding from
all of the above, Daniel Bernoulli and aforementioned Buffon can be considered
a precursors of Kahneman and Tversky’s prospect Theory (Peterson, 2008).
Daniel Bernoulli was able to utilise the dependence of the marginal utility
of winnings and losses on a person’s wealth during his times. Not only was he
able to explain why it was more profitable for some less wealthy persons to buy
insurance for particular hazard and for richer people not to buy it, but also
presented quite a modern theory of portfolio selection for risk spreading. Daniel
Bernoulli’'s thesis concerning diminishing marginal utility of money has been
immensely influencial since it serves as the basis for the standard theory of risk
aversion, which explains a wide variety of economic phenomena (Joyce, 2011).

1.3.1 Menger’s Super-Petersburg Paradox and its input to
Von Neumann—-Morgenstern utility theory

Cramer-Bernoulli solution of the St. Petersuburg Paradox did not pass the test of
time. It was refuted by Carl Mengerﬂ (1840-1921) - an Austrian economist, who
created a counterexample, later called Super-Petersburg Paradox by another
economist Paul Anthony Samuelsor{’¥ (1915-2009). Menger showed that
applying "sufficiently concave" transformation of the winnings is only a sufficient
but not at the same time necessary condition to solve the paradox.

Menger’s idea was to replace the payout a(n) = 2" by a(n) = ¢*" which
after applying Bernoulli's concave transformation in(-) to a(n) regains the
paradox. The same can be done to Cramer’s solution by replacing a(n) = 2" with
a(n) = (2. Hence, applying Cramer’s square root transformation Va(n) the
paradox is regained again. In general, Menger’s counterexamples show that for
each and every increasing and unbounded utility function an increasing
transformation can be found such that the transformed winnings converge

9Carl Menger was born in the Polish city of Nowy Sgcz which was at that time the teritory of
Austrian Partition in Austrian Galicia. He is mainly known as the founder of the Austrian School of
economics and his contribution to development of the theory of marginalism (marginal utility).

19Paul Samuelson was an American economist and statistician, a son of Jewish immigrants of
Polish origin. He was the first American to win the Nobel Memorial Prize in Economic Sciences
and the founder of faculty of economics at Massachusetts Institute of Technology.

22



relatively faster to infinity than the probabilities converge to zero. Carl Menger
was the first person to formulate and prove the necessary and sufficient
condition to prevent the occurrence of the St. Petersburg Paradox. The main
contribution of Menger to the solution of the paradox was the necessary
condition of utility function to be bounded. In other words, he showed that the St.
Petersburg game has a finite solution only if the utility of winnings is bounded.

The aforementioned Paul Samuelson called Menger’s breakthrough a
"quantum jump" in the analysis of the St. Petersburg Paradox. The solution was
also praised by other economists e.g. Kenneth Arrow (born in 1921) - American
economist and the youngest winner in history of the Nobel Memorial Prize in
Economics; and Robert John Aumann (born in 1930) - a member of the United
States National Academy of Sciences and the Noble Prize winner in Economics
for his work on conflict and cooperation through game-theory analysis.

It is most intriguing that the St. Petersburg Paradox had to wait such a
long time until Menger’s formulation of the necessary and sufficient condition to
prevent its occurrence. According to Christian Seidl (Seidl, 2013) it was due to
comprehension of utility and its development over several centuries. Many
scientists of that time considered utility as something "palpable, immutable, and
interpersonally comparable" (Dutka, 1988). It was not until 1906 when for the
first time Italian economist Vilfredo Pareto in his Manual accepted the
interpersonal noncomparability of utility. Paul Samuelson once concluded that
"to the preceeding generation of economists, interindividual comparisons of
utility were made almost without question; to a man like Edgewortlﬂ, steeped
as he was in the Utilitarian tradition, individual utility-nay social utility-was as real
as his morning jam.".

Menger’s argument was first publicly presented in 1927 to the Economic
Society of Vienna. His work did not receive much attention until 1934 when
Oskar Mongernstern, who was at that time the managing editor of the Zeitschrift
fur Nationalokonomie, decided to publish it in his journal. Menger’s input was the
most influential for the later creation of Expected Utility Theory by John von
Neumann and Oskar Morgenstern. The proof of this fact is how Morgenstern
himself recalls his cooperation with John von Neumann on the matter:

"...we decided that we would settle on thinking about numerical utility.
It did not take us long to construct the axioms on which the present theory is
based that gave us a firm utility concept, that of an expected utility, numerical up
to a linear transformation. ...Regarding risk, Karl Menger’s important paper of
1934 on the St. Petersburg Paradox ... played a great role. ...the construction of

"Francis Ysidro Edgeworth (1845-1926) was an Anglo-Irish philosopher and political
economist. In 1891 he was appointed the founding editor of The Economic Journal
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axioms of our expected utility came quite naturally. | recall vividly how Johnny rose
from our table when he had set down the axioms and called out in astonishment:
"But didn’t anyone see that?". ...It was largely my doing that this utility theory
was developed ..."
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2 Expected Utility Theory

2.1 Introduction

In the first part of the following chapter Von Neumann—Morgenstern utility theory
will be described in detail. Firstly, the process of creation, original arguments
and presentation of Von Neumann—Morgenstern axioms will be discussed on the
basis of their most famous book Theory Of Games And Economic Behavior (Von
Neumann and Morgenstern, 1953). The topic will also be elaborated by the
interpretation of the axioms. The second part of this chapter will be dedicated to
the elementary notions of making decisions under certainty and uncertainty as
the theory is most often presented in such context. The chapter will be
concluded by several examples and formal definitions concerning risk propensity
types in order to provide necessary notions for the last chapter of the thesis.

2.2 Von Neumann-Morgenstern utility theorem and
axiomatization

John von Neumann and Oskar Morgenstern at the beginning of the third chapter
of their most famous book Theory Of Games And Economic Behavior clearly
state their goal concerning the utility. By the use of wide notion of utility they
intend to describe the fundamental concept of individual preferences. In the often
quoted passage they refer to the economists’ reaction to their invention and the
well-known concept of "indifference curves".

"Many economists will feel that we are assuming far too much, and that our
standpoint is a retrogression from the more cautious modern technique of
"indifference curves"."

| am now going to carry out a detailed analysis of this chapter which is
considered one of the roots of the theory. Von Neumann and Morgenstern start
their considerations with a point to treat utility as a numerically measurable
quantity. Here, they make an interesting remark that in the literature of that time
such concept was considered radical. In order to prove that this concept is not
as radical as it was suggested, they present meticulous arguments supported by
step-by-step reasoning.

They decided to start they argumentation by comparing the notion of utility
to physical sciences. It resulted in a very intuitive and at the same time very
vivid argument. The authors suggest that every measurement or even a claim of
measurability must at the end be strictly connected with some sort of immediate
sensation which should be considered as natural and not requiring the need of
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further analysis. In the context of physics, an example of such sensation might
be light, heat or even muscular effort. One might begin to wonder what would be
the immediate sensation connected with utility. The answer seems quite natural -
the preference. The preference of one object over the other or the set of objects
against another. So far this argument only lets us state when one utility for a
person is greater than the other. What is particularly important is that it is not yet
a basis for numerical comparison of utilities - neither for an individual nor for the
comparison within the group of individuals. As we cannot intuitively think of any
easy way to add two utilities for the same individual, it might suggest the non-
numerical character of the utility. The mathematical procedure to describe such
situation is the use of indifference curve analysis.

The point of all the above is that the situation is similar to the early
beginnings of the theory of heat. Initially, it was clear on the intuitive level that
one body feels warmer than the other, however, no-one was able to indicate by
how much or how many times "warmer". Funny enough, this argument was
given by Von Neumann and Morgenstern to show that the ultimate shape of new
theories in the future is almost always impossible to forecast a priori. It is a
common knowledge that heat can be quantitatively described not only by one
number but two - the quantity of heat and temperature. Both of these
characteristics are numerical, however only the quantity is additive. By the use
of this argument, the authors might have wanted to influence the reader and
make him more willing to accept their theory or at least to make him less critical
about it. As the above example shows, one should be very cautious while
negatively assessing new theories since he cannot be sure about their future
development and ultimate appliance. In order to even further support the
argument the example of development of the theory of light, colours and wave
lengths was presented. All of these notions became numerical, however, in
completely different formal sense. Recapitulating, the point of Von Neumann and
Morgenstern was that even though at that time the notion of utility might have
seemed unnumerical, the history of heat theory might repeat in the future.
Hence, the theoretical considerations of the formal use of a numerical utility
should not be abandoned.

2.2.1 Probability and numerical utilities

Following this idea, only litle more effort than using the assumptions of
indifference curve analysis is needed to achieve a numerical utility. First and
foremost, the numerical utility requires the possibility to compare the differences
in utilities. It is a bigger assumption than sole ability to state preferences. For
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further analysis, a few assumptions will be made. Firstly, let us assume that an
individual has a surjective and complete system of preferences i.e. for any two
objects (or imagined events) he has a unequivocally defined intuition of
preference. In other words, when faced with two alternative events (possibilities)
he is able to clearly state which one of these two he prefers. A natural extension
of this assumption would be the possibility for the individual to compare not only
single events but also combinations of events with attached probabilities. Such
extension is needed for application to economy since many economic activities
are explicitly dependent on probability - which is usually unknown or hard to
estimate (the simplest example - insurance).

Let us assume the following situation. Let three events be denoted by A, B
and C'. For the sake of simplicity let the probability of occurrence of events B and
C' be equal to 50% i.e. the probability of B occurring is equal 50% and if B does not
occur, than event C' must occur with the remaining probability (which in this case
is 50%). Two further assumptions are made considering this situation. Firstly,
the two alternatives B and C' are mutually exclusive so there is no possibility of
complementarity. Secondly, we assume absolute certainty of the occurrence of
either event B or C.

In our example we expect the individual to have a clear intuition whether
he prefers event A to the 50 — 50 combination of events B and C or the opposite
(the combination of B and C' to the event A). Having established the example,
let us consider three cases. When the individual prefers event A to event B and
at the same time event A to event C' (using modern game theory nomenclature:
A= BANA > (C),itis clear that he will also prefer event A to the combination of
events B and C. Similarly, if he prefers event B to event A and at the same time
event C'toevent A (B - AAC = A), he will prefer the combination of events B
and C to the event A. However, if he should prefer event A to let us say B but
at the same time C'to A (A = B A C = A), than any statement of his preference
of A to the combination of B and C' in such case gives us a fundamentally new
information. Hence, this case provides a base for numerical estimation of the fact
that his preference of A over B is "greater" than his preference of C over A.

The above case can be explained by the use of a very simple example.
Let us assume that an individual prefers a glass of tea to a cup of coffee and at
the same time that he prefers a cup of coffee to a glass of milk. In order to get
to know if the second preference (i.e. difference in utilities) is greater than the
first one, it is enough to make him decide whether he prefers a cup of coffee to a
glass which content will be determined by a toss of a fair coin (heads = tea, tails
= milk).

It is important to point out that so far we have only outlined the intuition
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which enables an individual to decide which of the two "events" is preferable. So
far we have not talked about the estimation of the relative sizes of preferences
(differences in utilities). If the view presented above is accepted, it gives us a
criterion how to compare the preferences of C' over A with the preference of A
over B. Hence, the differences of utilities become numerically measurable. The
fact that such comparison is sufficient for a numerical measurement of "distances”
was first observed in economics by Vilfredo Pareto. It is worth mentioning that
exactly the same argument was used a lot earlier in mathematics by Euclid for
the position of points on a line which actually was the very basis of his classical
derivation of numerical distances.

The abovementioned example was extended further by the authors. They
intended to show even more direct way of achieving numerical measures by the
use of all possible probabilities. Let us again consider the three events A, B and
C, however, this time with specified order of preference: the individual prefers
event C to A and at the same time A to B. This gives the following order of
preference written in modern nomenclature C' = A = B. Now, let us introduce
the new parameter a which is a real number from the interval 0to 1: a € RAa €<
0,1 >. Parameter a should be associated with the events in such a way that
event A is equally desirable with the combined event consisting of event C' with
associated probability described by the parameter « and event B with associated
remaining probability 1 — . Having defined «, the authors suggest to use it as a
numerical estimator of the ratio of two preferences - preference of event A over B
to the preference of event C over B.

The case above enables us to present another example of appliance of
the reasoning. Let us assume that we consider a certain good. Now we aim
to determine the ratio of utility of having one unit of such good to the utility of
having two units of it. Let us denote this ratio by ¢q. We are ready to construct
a query for the individual which will enable us to determine his preference by
utilising the introduced ratio ¢. We give an individual a choice of having 1 unit of
the considered good with certainty (analogous to the event A of the theoretical
example given prior to this one) or playing for the chance of having 2 units with
the probability « (analogous to event C') or ending up with nothing with remaining
probability 1 — « (analogous to event B). Hence, we can determine that if he
prefers one certain unit than ¢ > «, if he prefers to play than ¢ < « and finally if
he cannot state his preference than ¢ = a.

Before we proceed further with our considerations, a few remarks are
needed to be made. First and foremost, further analysis of the above example
requires the use of the axiomatic method which will be introduced later on in this
chapter. Furthermore, in order to avoid potential misunderstandings and for the
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sake of simplicity, when referring to any "events" we perceive them as future
events. What is more, we intend to treat these events as occurring at exactly the
same, standardised moment in the immediate future. However interesting it
might be to consider events in different places in the future (for example in scope
of the theory of saving and interest), it complicates the consideration far too
much.

All of the above considerations are directly connected to the concept of
probability. The authors wisely point out that the probability might be perceived as
a subjective concept of estimation or as a frequency in long runs. Since we want
to construct an individual and numerical estimation of utility the later view should
be used. It is well founded and gives us the necessary numerical background for
further analysis.

2.2.2 Principles of measurement

Going back to the main aspect of our considerations i.e. numerical
measurement of the utility, we should point out that nowhere did we get any
basis for neither qualitative nor quantitative comparison of utilities between
different individuals. For the individual, this measurement procedure relies on
the hypothesis of completeness in the system of his preferences. However, it is
important to consider another case. Let us imagine a situation in which the
individual cannot state his preference of one event over the other and at the
same time he cannot clearly state that these events are equally desirable for
him. This case seems realistic but unfortunately makes numerical measurement
of the utility and the method of indifference curves impracticable. From the
mathematical perspective this problem is connected with the theory of ordered
sets. The problem comes down to the question whether considered events (with
respect to preference) form only partially or completely ordered set.

By the above considerations, the authors wanted to show that the method
of indifference curves in some cases might imply either too much or in the others
too little. Two cases should be considered in order to explain this statement. Let
us assume that the preferences of an individual are not all comparable. In such
case we cannot construct indifference curves as it is required that any points
on the same indifference curve must be identified. Hence, there is no place for
incomparability. On the other hand however, when the individual’s preferences are
all comparable, than a uniquely defined numerical utility can be obtained which
makes the indifference curves redundant.

Prior to the discussion about the measurability details, the authors again
clearly justify the reason for developing their theory. They argue that even
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though one may wonder what is the reason for measuring individual’s utility,
since in real life no one seems to numerically measure for instance intensity of
light, level of heat or muscular effort, these phenomena had to be measured in
order to develop the science of physics. Hence, even though one may not
perform such measurements on every day basis, he certainly uses the results of
such measurements - directly or indirectly. On the ground of this argument, Von
Neumann and Morgenstern claim that once the understanding of economic
phenomena is developed further in the future, the need for such measurability
might become necessary and therefore might affect the life of individuals.

Before discussing details of measurement principles, Von Neumann and
Morgenstern wanted to assure the reader that the numerical scale of utility has
not been forced anyhow. They go back to the example in which the individual
preferred event A to the combination of events B and C (with equal 50%
probability of occurrence) assuming the preference of event C' to A and at the
same time event A to B. While discussing this example earlier, the authors
stated that it gives the basis for numerical estimation that individual’s preference
of event A over B exceeds the preference of event C' over A. It must be
emphasised that the authors did not intend at any point to assume or take for
granted that one preference may exceed another. The only assumption they
wanted to make was that this example provides a good empirical evidence that
imagined events can be combined with probabilities and than utilities as well,
regardless what they may be.

In the next part of the chapter, Von Neumann and Morgenstern present
detailed principles of measurement by giving examples of measurements in the
field of physics. It is often observed in science that some quantities which are
not a priori mathematical are used to describe physical world. Some of these
quantities can be grouped together in domains which are characterised by
certain operations - well-defined, possible and natural for its domain. Let us give
a few examples from the field of physics to properly illustrate our reasoning. For
instance, addition can be considered as natural operation for physically defined
quantity of "mass". The same can be said about physico-geometrically defined
quantity of "distance". However, the quantity of "position" defined in the same
way does not permit such operation. Nevertheless, it allows us to create the
"center of gravity" of two positions.

Even more examples related to physics could be mentioned here,
however, more important is to understand the notion of the mentioned "natural”
operation in a given domain. In order to avoid misunderstanding, one should be
aware that even though some operations in particular domains might be called
as "addition" (more specifically "of additive nature") and resemble some common
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mathematical operations, it does not mean in any case that these two operations
with the same name are identical. It only indicates that they have similar
characteristics and we might hope that at the end some correspondence
between them will be established. Von Neumann and Morgenstern in their book
elaborate on this matter further by concerning other examples and analysing
more complex mathematical transformations. The authors conclude their
deliberation by stating that the situation of utility is very similar comparing to
given examples. They remark that "utilities are numerical up td'? a monotone
transformation". This view is widely accepted in economy and supported by the
use of indifference curves.

In order to narrow down the system of transformations, additional
operations or relations should be found in our domain of utility. Vilfredo Pareto
once suggested that it would be enough to introduce an equality relation for the
consideration of utility. In our case it would result in reduction of our
transformation system to the linear transformations. This view can be compared
with what Euclid suggested for position on a line. The concept of "preference"
can be compared to the Euclid’s concept of "lying to the right of". Unfortunately,
this suggestion cannot be used because, as Von Neumann and Morgenstern
point out, this relation does not seem "natural® and what is more cannot be
interpreted by reproductive observations.

Despite the negative assessment of the abovementioned relation, Von
Neumann and Morgenstern believed that there is another "natural" relation
which can bring the same result i.e. narrow the transformation system to the
linear transformations. The authors took advantage of already introduced
concept of two utilities with associated two alternative probabilities to them: «
and 1 — «, given that « € RA a €< 0,1 >. Due to the fact that a major
resemblance to the formation of centres of gravity can be found in the mentioned
process, the authors decided to use the similar terminology for the sake of
simplicity.

2.2.3 Conceptual structure of the axioms

In the following section | will use the same notation as Von Neumann and
Morgenstern used in order to enable the reader to make an easy comparison

12"yp to" is a mathematical parlance. The phrase "up to" is used while discussing the elements
of a set X and the condition(s) Y under which subsets of those elements may be considered
equivalent. In other words, when it is said that "the elements = and y of the set X are equivalent
up to Y" it means that we consider elements = and y as equivalent if criterion Y is ignored.
A typical example of the use of such expression in mathematics is given while discussing the
solutions to an indefinite integral. The solution to an indefinite integral [ f(z)dz is a function g(z)
up to addition by a constanti.e. [ f(z)dx = g(z) + C.
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with the original considerations.

Let v and v denote utilities. Our "natural” relation connected with those
utilities is preference. Therefore, if we assume that u is preferable to v, than we
would denote it as follows: u > v. [} The "natural" operation, however, will be
denoted: au + (1 — o)v, where again « € R A o €< 0,1 >. It can be interpreted
similarly to the physical interpretation of centre of gravity i.e "centre of gravity
of u, v with the respective weights o, 1 — «", or more directly connected to our
reasoning i.e "combination of u, v with the alternative probabilities «, 1 — a". Now,
if we agree to above assumptions, the mathematical (numerical) concept must be
found which will convey both, the relation « > v and the operation au + (1 — a)v
for the utilities.

Let us start by denoting the following correspondence:

u—)p:V(U),

where u denotes the utility and v(u) denotes the number which is attached to the
utility « by the above correspondence. Having established the correspondence,
we now state the following requirements:

u>v=v(u)>vv) (2.1a)

viou + (1 — a)v) = av(u) + (1 — a)v(v) (2.1b)
Let us create two correspondences denoted as follows:

u— p=v(u) (2.2a)

u— p =v'(u)
They set up a correspondence between numbers
PSSy, (2.3)
which may be also represented by a function:

P = o(p) (2.4)

From the fact that our two correspondences i.e 2.23] [2.2b| fulfil the requirements

2.4, [2.1b, we can conclude that the function ¢(p) from equation must
preserve the analogical relation p > o (please note that now p and o represent

8Von Neumann and Morgenstern used symbol > instead of > which is commonly used
nowadays. For the sake of coherence, | will preserve authors original homenclature and use
the symbol > and < for indicating preference in this section.
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numbers!) and the associated operation ap + (1 — a)o. When we look closer into
above considerations, we can contrast both sides of equations in each case. By
this we mean, that each left-hand side preserves the "natural" concepts for
utilities which were discussed before and each right-hand side represents known
and intuitive concepts for numbers. Hence, we can now represent this reasoning
in an analogous way:

p>0=9(p)> (o) (2.5a)
dlap+ (1 —a)o) = ag(p) + (1 — a)é(o) (2.5b)

The above equations imply that ¢(p) must be a linear function. In formal
mathematical language we can denote it as follows:

p'=d(p) = wop + w, (2.6)

where wy, w; are fixed numbers (constants) and additionally wq > 0.

From all the above, we can conclude that if a numerical representation of utility
in a form of a correspondence described in [2.24] fulfilling both the requirements
[2.1aland|2.1bexist at all, it must be in a form of linear transformation as shown in
2.6l Hence, utility must be a number up to linear transformation.

Prior to defining the axioms, Von Neumann and Morgenstern admit in a
sense that their axioms might be vulnerable. They state that the choice of the
axioms is rather subjective and never fully objective. What is more, they are
usually created in order to achieve certain goal. Indeed, when established it
should be natural to derive from them certain theorems and to this extent they
might be considered exact and objective. Having secured the statement that there
is always a subjective and objective side of the process, the authors proceed to
list in their opinion the most important features (requirements) of the axioms.

e there should be a relatively small number of axioms
e the system of axioms should be as simple and transparent as possible

e each axiom should have an immediate intuitive meaning by which its
appropriateness may be judged directly

The authors point out that the third requirement, despite its vagueness, is of the
most importance because their aim is to create an intuitive concept which would
be possible to be treated in a mathematical way and hence it would be possible
to observe what hypothesis it requires. When it comes to the objective side of
creating the axioms, from the previous considerations we want them to imply the
existence of correspondence satisfying the requirements|[2.1aland [2.1b]
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It is essential to point out that above considerations do not indicate in any
way how to find an axiomatic treatment. Von Neumann and Morgenstern
formulated a set of axioms which seemed to them "essentially satisfactory".

2.2.4 Original version of the axioms

Let U be a system of entities (abstract utilities) u, v, w,.... For any number o €
RAae<0,1>,arelation v > v and an operation au + (1 — a)v = w is defined.
The above concepts satisfy the following axioms:

1. COMPLETENESS
u > v is a complete ordering of U (2.7)

For any two u, v one and only one of the three following relations holds:
u=v, u > v, u<v (2.8)
2. TRANSITIVITY

USUVAU>W=Uu>w (2.9)

Ordering and combining. Let «, 3, € (0, 1):

u<v=u<au+ (l—aw (2.10a)
u>v=u>au+(1—aw (2.10b)

3. CONTINUITY(™
u<w<v=3da au+ (1l —a)v <w (2.11a)
u>w>v=3da au+ (1 —a)v>w (2.11b)

4. INDEPENDENCE

Algebra of combining.
au+(1—a)v=»1—-a)v+au (2.12a)
alfu+(1—-B)v)+ (1 —a)v=yu+ (1 —v)v where v=af (2.12b)

From the above axioms it is possible to observe that they imply that the
correspondence (page satisfying the requirements [2.1a] and [2.1b| does
exist. Therefore, we can state that the conclusion about linear transformation

4The symbol 3 denotes the existential logic quantifier which stands for "there exists" or "exists".
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holds good as the abovementioned system of abstract utilities U is numerical up
to a linear transformation. The formal construction of such correspondence by the
use of the axioms can be considered as a purely mathematical process. Although
the process itself is quite long, it should not cause substantial difficulties as it uses
common and conventional mathematical methods.

2.2.5 |Interpretation of the axioms

In the following section, each of the axioms will be briefly discussed giving
explanation together with authors’ reason for development.

1. COMPLETENESS

Completeness has been partially discussed prior to axioms introduction. This is
a basic mathematical concept which is typical for discussing utilities and
preferences. It is also applied while using the method of indifference curve
analysis. As additional remark, we should point out that the system of utilities U
is completely ordered. That means that for our defined relation « > v we can
write v < v when v > u. Most importantly, however, we should notice that for any
two selected utilities © and v there are only three possible relations: v = v, u > v
and u < v (see[2.7]and [2.8 on page [34). These directly implies the transitivity.

2. TRANSITIVITY

Transitivity is another generally accepted and common mathematical concept.
When we consider three utilities u, v and w and clearly state two relations of
preference between them i.e. u > v - unambiguous preference of u over v; and
v > w - unambiguous preference of v over w, than from these two assumptions
we logically imply the third relation i.e. u > w (see on page [34). In other
words, it requires no more than common sense to deduce that if an individual
prefers u to v and at the same time v to w, he will with all certainty prefer u to w
when given such choice.

The next implication (see [2.10a) means that if we assume preference of v
over v (v > u) than even a chance of achieving v with probability 1 — «
alternatively to u is still preferable. We can assume so, due to the fact that we
have already ruled out any possibility of complementarity in our earlier
considerations. Implication is analogous to the implication with the
difference of putting "less preferable" in place of "preferable".

3. CONTINUITY

Let us consider the formula 2.11al Let u, w and v denote the utilities with two
established relations such that together they form an unambiguous order of
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preference i.e. u < w < v (we assume preference of w over u (first relation) and
at the same time preference of v over w (second relation)). From these
assumptions we can imply the existence of parameter oE] such that
au+ (1 — a)v < w. It should be interpreted as follows: the combination of « and
v with probabilities o« and 1 — a respectively, will not affect anyhow the
preferability of w to such combination, given that the chance 1 — « is small
enough. In other words, however desirable v may be, it is possible to reduce its
influence as much as desired by associating with it sufficiently small chance.
This assumption was named by the authors "continuity". The next formula[2.11b)
is again analogous to the explained formula in a similar way as in the
previous axiom (2.10ajand|2.10Db).

4. INDEPENDENCE

Equation number is sometimes referred to as an "additional" axiom of
ordering in modern literature. Let « and v denote two utilities. Than equation
[2.114] states that it does not matter in what order we name given utilities. Hence
the name "ordering". It is a legitimate assumption as the mentioned utilities are
considered alternative events (see explanation of transitivity axiom above and
consideration of complementarity).

The following equation states that it does not matter if the
combination of two utilities (in this case u and v) is achieved in two consecutive
steps - firstly by applying probabilities with component « i.e. « and 1 — « and
than probabilities with component 5 i.e. f and 1 — 8 - or in single step by
applying probabilities with the component ~ i.e. v and 1 — v where v = apf.

2.2.6 Final remarks concerning the axioms

Having established and explained the axioms, Von Neumann and Morgenstern
again justify their invention and make some final remarks concerning potential
problems with their theory. They start by asking if their axioms do not show too
much. Directly from the axioms one can show the numerical character of utility in
accordance with previous assumptions i.e. on page and its related
requirements i.e. [2.1al and [2.1b] Furthermore, the second requirement [2.1b)
directly implies that numerical utility can be combined with probabilities just like
mathematical expectations. However, we already know from the previous
chapter that the concept of mathematical expectation has been questioned
many times. The problem arises. Is it possible that there exists a utility (positive
or negative) of gambling ("taking a chance")? Please notice that the use of

Swe do not imply anything more about parameter « than its mere existence
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mathematical expectation obliterates such utility. The authors ask a question
how their axioms deal with this problem?

They clearly state that their axioms do not try to avoid it. They argue that
even the postulate [2.12b| which is connected to the idea of utility of gambling the
most, is valid under the modern system of psychology applied to economics
(Berka, 1976). Furthermore, the authors claim that their invention i.e. definition
of numerical utility is suitable for the use with the mathematical expectations.
They support this view by referring to the already discussed matter of "moral
expectation" used by Daniel Bernoulli. Let us remind the reader that Bernoulli's
concept was a suggestion on how to solve the St. Petersburg Paradox (using
"moral expectation" instead of the mathematical expectation). What he did
essentially was defining utility numerically as a logarithmic function of
individual’s wealth. However, Von Neumann and Morgenstern admit at the end
that due to the characteristics of construction of their theory, it is inevitable to
face some contradictions while trying to analyse concepts like "utility of
gambling". Moreover, they confidently state that anyone who has ever tried to
make axiomatisation of this matter would certainly agree with the point that
some minor contradictions cannot be completely omitted.

Finally, let us restate the most important aspects of the theory. First and
foremost it should be clearly pointed out that all of the above considerations
apply only to the utilities perceived by single individual. Any of these
considerations do not imply at any point anything about potential comparison of
utilities between more individuals. Secondly, there is a lot more to be said
regarding methods which utilise mathematical expectation. Although the authors
were aware of the existence of many interesting questions regarding this matter,
their goal to lay the ground for further analysis by developing essential notions
and axioms was achieved. Recapitulating, Von Neumann and Morgenstern
developed simple axioms which are valid for the relation v > v and the operation
au + (1 — «)v which they established. By these means they managed to
numerically define utility up to a linear transformation.

2.3 Decision theory - decision making under certainty and
uncertainty

Having discussed the notions of mathematical expectation and expected utility
theory, in the following part of the thesis | would like to focus more on their
appliance. The book Theory Of Games And Economic Behavior by John von
Neumann and Oskar Morgenstern is considered by many as a "bible" of Game
Theory. This publication was without a doubt a milestone in development of this
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branch of mathematics. In my opinion, Expected Utility Theory together with
development of Game Theory made an extraordinary "bridge" between
mathematics and economics. Not only did it change the perspective of
mathematicians on some economic phenomena but also enabled economists to
utilise mathematical apparatus in wider aspect of economic problems. One of
the direct implications of Expected Utility Theory is the theory of making
decisions under uncertainty or what we might call in a more economic way -
modelling rational behaviour. This is probably one of the most common and
basic appliances of the theory, yet very interesting (Straffin, 2011). In order to
introduce basic concepts concerning the subject, a few formal definitions must
be established first.

2.3.1 Decision making under certainty

Let us start with a simple example. Assume that the individual has 1000€ to
invest. He has two choices. The first one is to invest the whole amount by making
deposit account with guaranteed return of 4% in his bank. The second is to
invest in investment portfolio offered by his financial advisor with return defined
as follows: 25% chance of getting return of 1%, 25% chance of getting return of
3%, 25% chance of getting return of 4% and lastly 25% chance of getting return
of 9%. Where should the individual decide to invest him money in? The answer to
such question is not straightforward. One would say that it suffice to calculate the
expected return (we may also call it EMV which stands for expected monetary
value) of both options and select the one which offers higher one. It might not be
visible at first sight but investing in portfolio has higher EMV'. Let a denote making
deposit account and b investing in portfolio. Than, it is very easy to calculate that:

EMV(a) = 4%

EMV (b) = 25% x 1% + 25% x 3% + 25% x 4% + 25% x 9% = 4,25%

Now we can see without a doubt that EMV (a) < EMV(b). Does it mean that
the individual should choose to invest in portfolio? Not necessarily. First and
foremost it depends on individual’s propensity to risk taking. It will be the main
subject of the following considerations. Before moving forward let us remark that
the expected return (or EMV) in terms of probability theory is no different from
expected value of the discrete random variable which gives us different possible
values of portfolio returns.

The above example was very conservative, let us analyse another one,
this time more radical. Assume the individual is given a choice to receive 5€ for
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certain or to take a chance (gamble): 50% chance of receiving nothing (0€) and
50% chance of receiving 15€. Now imagine the same example but with
significantly different amounts. 5 min € for certain or a 50-50 gamble: nothing or
15 min €. It is safe to assume that when faced with the first version of this
example, most people would probably take a chance to receive 15 €, however, it
is highly unlikely that more than few percent of people would actually take a risk
for 15 min € but would rather take guaranteed 5 min € instead (given that they
are not millionaires). One might ask what is the reason for such behaviour? Are
people being inconsistent or irrational in this example? We have partially given
example to this question already in the previous chapter. This discrepancy
between the two version of the second example can be explained by diminishing
marginal utility - the concept which was already suggested by Bernoulli. People
do not value money purely by its amount but by the utility they might harvest from
it. Connecting this two notions i.e. money utility and its diminishing marginal
return, we can conclude that 15 min € even though being three times bigger
than 5 mIn € does not bring three times more utility. Hence, when faced with the
opportunity to get life-changing money with 100% certainty, they do not wish to
risk it for a chance to get three times more or end up with nothing. So far, some
analogies to what has been already discussed within this work might be noticed.

One question is still to be answered though. How can we define a rational
person? The following considerations aim to present a very simple model of
modelling rational behaviour which utilises some notions connected to expected
utility theory of John von Neumann and Oskar Morgenstern. First of all we claim
that every rational individual has his unique ranking of outcomes which is based
on his personal preferences. Furthermore, what is in line with Von Neumann
and Morgenstern’s logic, we do not demand this ranking to be related anyhow
to other individuals, however, we require it to be internally consistent. Hence,
we can define a rational individual as having consistent preferences regarding
outcomes and pursuing the most preferred one. We can illustrate this reasoning
with a very simple example. Let us assume that a set of two possible outcomes
is given - having a coffee or having a tea. When we ask a group of individuals
about presented outcomes, they would surely express their preferenced™| It is
obvious that some of them would prefer having a coffee to having a tea and vice
versa. However, when given a free choice each individual should choose to have
a desired beverage according to his individual preferences. Otherwise he would
be acting irrational i.e. for example preferring a tea and choosing coffee.

Having presented our logic and examples supporting it, we can now

8For the moment let us assume that there is no uncertainty connected with a choice i.e. making
a choice will definitely lead to associated outcome.
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formulate necessary definitions. They will consist of contemporary nomenclature
a bit different but analogical to the one used by Von Neumann and Morgenstern.
For all following considerations let €2 denote the set of possible outcomes where

Q= {wl,wg,wg, .. }

Definition 2 (Relations between preferences)
Let preferences of an individual be denoted in the following way:

e w; > wo When the individual strictly prefers outcome w, to the outcome w,
e w; ~ wyo When the individual is indifferent about both outcomes

e w; = wy (weak preference) when the individual either prefers w, to w, or is
indifferent about these two outcomes

With set up notation of preferences we can define rationality under certainty. In
the following definition we an see close similarity to the axioms defined by Von
Neumann and Morgenstern.

Definition 3 (Rationality under certainty)
We call an individual rational under certainty if his preferences satisfy the following
conditions:

1. COMPLETENESS w; = w, Y wy = w; []
2. TRANSITIVITY (w1 i Wa A Wa t W3) = W i W3

Similarly to Von Neumann and Morgenstern axioms, the completeness
requirement enables the comparability of the outcomes. The transitivity
requirement, however, enables these outcomes to be ranked in order of
preference (due to the weak preference, "ties" between some outcomes are
allowed). Thanks to these two definitions we can now define the utility function
also known as Von Neumann-Morgenstern utility function. Let us remark that an
outcome w might be of numeric nature (e.g. amount of money, number of
winning votes etc.) or intangible (e.g. level of happiness, health condition etc.).
The utility function, as we already know from Von Neumann and Morgenstern
conclusions, assigns a numerical value to an outcome regardless of its nature
(numerical or intangible). Moreover, we require this function to convey all
necessary information (regarding an outcome) which are important to the
individual to whom this function might belong. Now we are ready to formally
define the utility function.

7sign V denotes exclusive disjunction (either X or Y)
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Definition 4 (Utility Function)
A utility function is a function u : Q) — R which satisfies the following conditions:

u(wy) > u(wy) <= wyi > we

u(wy) = u(wy) <= w1~ wo

The above definition directly implies that every individual who is rational under
certainty should try to maximise his utility (Webb, 2007). If we consider payoff
function 7 and its relation to the utility function, we can notice that for a particular
choice a and the outcome associated with this choice w(a), a payoff function has
the following form: 7 (a) = u(w(a)).

2.3.2 Decision making under uncertainty

It should be noted that so far we have analysed only the situation where we
consider choices which result in certain (known, guaranteed) outcomes. In order
to follow the logic of Von Neumann and Morgenstern, we are now going to
analyse situations in which outcomes are uncertain i.e. they depend on certain
probabilities. This requires a definition of a lottery and a distinction between
simple and compound lotteries.

Definition 5 (Lottery)
1. SIMPLE LOTTERY: A simple lottery, which we denote by )\, is a set of
probabilities of occurrence associated with every outcome w € Q.
The probability of outcome w occurring in the lottery A\ shall be denoted as
follows: p(w|\). Let A denote a set of all possible lotteries, than

2. COMPOUND LOTTERY: a compound lottery is a linear combination of
simple lotteries which belong to the same set A.
An example of a compound lottery: q\; + (1 — q) X2, where g €< 0,1 >.

By looking at the definition of compound lottery it is easy to notice the
resemblance to the "natural" operation defined by Von Neumann and
Morgenstern. Moreover, it is important to notice that we can regard compound
lottery as a lottery in which the outcomes are lotteries as well. This remark is
helpful for understanding the definition of rationality under uncertainty which we
are now ready to introduce.

Definition 6 (Rationality under uncertainty)
We call an individual rational under uncertainty (or simply rational) if his
preferences regarding lotteries satisfy the following conditions:

1. COMPLETENESS M= Y=\
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2. TRANSITIVITY (A =X A A= X3) = A = Mg

3. MONOTONICITY (A = Ay A @1 > @) = @i +(1—q)As = @A+ (1—g2) Ao
4. CONTINUITY (A =X A A= 3) = Jg do~ gl + (1 — )

5. INDEPENDENCE )\, = )y = g\ + (1 — @)X = gha + (1 — @)\

Now we can see in full scope, that the above requirements were greatly
influenced by the axioms developed by Von Neumann and Morgenstern. Taking
into account the difference in creating above definitions i.e. introducing relation
of weak preference, the requirements of completeness, transitivity and continuity
are completely in line with Von Neumann and Morgenstern axioms. The first two
requirements (completeness and transitivity) have exactly the same
interpretation as in the case of rationality under certainty. The monotonicity
together with continuity requirement can be interpreted analogically to the
original axioms. Independence, however, requires more attention as it will be a
subject of important considerations in the next chapter of this thesis. The
independence requirement implies that preferences depend solely on the
differences between lotteries (Aliprantis and Chakrabarti, 1998). In other words,
it is possible to ignore components that are the same. As all the requirements
were briefly commented, it is possible now to introduce one of the most
important theorems concerning the matter of modelling rational behaviour which
is the Expected Utility Theorem.

Theorem 1 (Expected Utility Theorem)

Let an individual be rational in the sense of the Definitiong and have a utility
function v : Q) — R. Than, a rational individual acts in a way that maximises the
expected utility function (the payoff function) w(a) given by the following equation:

m(a) =Y p(wlA(a)) uw) (2.13)
wel

Before discussing the subject further, let us present and briefly analyse
another example. Let us assume that individual A has a utility function u4(w) = w
while an individual B has a utility function ug(w) = /w. Two lotteries denoted
by L, and L, are presented to both individuals. The rules of the lottery L, are
as follows: in order to take part in a lottery, an individual has to pay a fee equal
to 300 € to have a chance to win 525 € with probability 50% or 325 € with the
remaining probability (also 50%). The rules of the second lottery L, are as follows:
in order to take part in a lottery, an individual has to pay a fee equal to 500 € to
have a chance to win 644 € with probability 50% or 600 € with the remaining
probability (also 50%). Which of the two lotteries is preferred by each individual?

42



Let us calculate the expected utility for both lotteries from the perspective of both
individuals. Expected utilities of individual A for both lotteries are calculated in
the following way:

L 0,5 x (525 —300) + 0,5 x (325 — 300) = 0,5 x 225+ 0,5 x 25 = 125

L{: 0,5 x (644 — 500) 4 0,5 x (600 — 500) = 0,5 x 144 + 0,5 x 100 = 122

while expected utilities of individual B for the same lotteries are:

LP: 0,5%xv/525 — 30040, 5x+/325 — 300 = 0,5x <\/225 + \/25> =0,5%(15+5) = 10

L 0,5%xv/644 — 500+0, 5x/600 — 500 = 0, 5x <\/144 + \/100) =0,5%(12+10) = 11

Let us summarise the results in a form of a table. We can clearly see in the

lottery 1, lottery Lo
individual A L =125 Ly =122
individual B L =10 L =11

Table 2: Example 2. Source: Own compilation.

table 2 that even though two individuals are faced with exactly the same lotteries,
according to their expected utilities they would choose differently. The individual
A would chose lottery L, as L{ > L', however, the individual B would choose
lottery L, as L¥ > L% (even though lottery L, offers bigger maximum payoff
i.e. 225). This example shows very important characteristic of making decisions
under uncertainty. It shows that different individuals might perceive risk differently
(or in some cases we might talk about different tolerance for risk). In the above
example, we can say that an individual B is more cautious (risk averse).

Having shown by the above example that individuals might represent
different attitudes towards risk, we can now present the formal definitions of risk
propensity types in the theory of decision making.

Three types of individuals concerning their propensity to risk can be defined
(Webb, 2007); those who are:

¢ RISK AVERSE - they prefer sure thing to gambles with the same expected
value

e RISK NEUTRAL - they rank gambles according to their expected value

e RISK SEEKING| - they prefer the gamble to a sure thing with the same
expected value (opposite to RISK AVERSE individuals)

8sometimes also called RISK PRONE
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These can be defined in more formal way by using the utility functions.

Definition 7 (Risk taking propensities)

Letu : [0,00) — R be the utility function. We define three types of individual’s
propensity to risk taking by the form of his utility function. If one’s utility function
Is:

e linear i.e. of the form: u(w) = aw + b, then an individual is RISK NEUTRAL
e strictly concave, then an individual is RISK AVERSE
e strictly convex, then an individual is RISK SEEKING

Usually for the purpose of simple modelling of rational behaviour, the utility
functions are derived strictly from the above definition i.e. an example of typical
risk averse utility function is u(w) = /w, while for risk seeking utility function is
u(lw) = w", where n € N. Visual examples of utility functions and risk
propensities associated with them can be found in the figure 1| below.

U
Concave Utility: _/
Risk Averse { Convex Utility:

Risk Secking

u(w) =aw+b

Uu u
— .

/}emUtihty:
[ Risk Neutral

W W W

Figure 1: Examples of utility functions with indicated risk taking propensities.
Source: (Aliprantis and Chakrabarti, 1998)

There also exists a bit more complicated definition of risk propensity
utilising the concept of expected value.

Definition 8 (Risk taking propensities - E(-))
Letwu : [0,00) — R be the utility function. An individual is said to be:

e RISK NEUTRAL if E(u(w))=u(E(w))
e RISKAVERSE if E(u(w))<u(E(w))
e RISKSEEKING if E(u(w))> u(E(w))

given that E(w) exists and can be defined.

44



u(w) E(u(w))

1w
Figure 2: Risk taking propensities utilising E(-). Source: (Webb, 2007)

The above definition can be checked by applying it to the second example on

page 42 For LF:
E(u(w)) = 0,5 x (\/225 + \/%) ~ 10

u(E(w)) = /0,5 x (225 + 25) = 5v/5 ~ 11,18

because u(E(w)) > E(u(w)), on the ground of definition [8, we can confirm our
previous conclusion that an individual B has risk averse utility function.
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3 Maurice Allais’s critique and Allais Paradox

3.1 Introduction

The following chapter will focus on Allais Paradox which is the most recognised
violation of the Expected Utility Theory. The chapter will be divided into three
parts - the first concerning Maurice Allais’s critique of the Expected Utility
Theory, the highlights of his arguments presented in his well known article "Le
Comportement de 'Homme Rationnel devant le Risque: Critique des Postulats
et Axiomes de I'Ecole Americaine” (Allais, 1953) and the origins of the Allais
Paradox; the second part will introduce the necessary notions regarding
indifference curves theory and the paradox itself; and finally, the third part will
present some factors from psychology which also explain why some axioms of
the Expected Utility Theory are violated.

3.2 Allais’s critique of the American school and the origin of
Allais Paradox

In the beginning of 1970’s, the theory of decision making under uncertainty
seemed to be a success in the field of economic analysis. One of the reasons for
such a believe was the fact that it was created on solid axiomatic foundations
(Karni, 2014). Furthermore, it significantly influenced risk analysis and started to
be applied in real economic issues. Some of the economists of that time even
believed that the theory would lay a groundwork for the upcoming ’information
revolution’ in economics. Nowadays it is known that the theory has been
challenged on several grounds many times, both from the perspective of
economics and other sciences (Hagen and Wenstop, 1984) (Broome, 1985).
One of the first problems the theory of decision making under uncertainty had to
face was the inconsistency of human propensity to risk taking in real life (Pope,
1986).

It is easy to observe that human attitude towards risk is far from being
consistent. For example, there are people who are willing to pay for a chance to
take risk while being aware that the expected payoff of such risky event is, on the
average, lower that the actual stake paid for taking the risk itself. In other words,
we are thinking about people who buy lottery tickets, are involved in betting on
various games or simply try their luck in casinos. We already know from the
previous chapter that such individuals in economic terminology are called risk
seekers (or equivalently - of risk-seeking attitude). On the other hand, we can
think of people of the opposite nature. There are people who pay in order to
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minimise, or even get rid of the risk completely, even though at the same time
they are aware of the fact that the expected value of uncertain loss is, on the
average, lower that the amount paid for insuring the event. Such individual usually
buy insurance policies of various kinds e.g. car, health or life insurance policies.
About such individuals we say that they are risk-averse.

However, it is crucial to realise that in real life it is impossible to find an
individual who is either exclusively risk-seeking or exclusively risk-averse.
Usually individual's propensity to risk taking differs depending on situation.
Sometimes, the individual's attitude towards the particular situation might be
different in different time scope e.qg. different part of a day, different season of the
year and so on. Professor Aswath Damodaran from the University of New York
has given a nice real life example on that matter: "The same person who puts his
life at risk climbing mountains may refuse to drive a car without his seat belt on
or to invest in stocks, because he considers them to be too risky..

Despite the difficulties in proving whether people are predominantly
risk-seeking or risk-averse, some attitudes have been accepted in the economic
literature regarding decision making under uncertainty. The most influential
notion raised by Bernoulli was the diminishing marginal utility of wealth. Due to
the fact that it is in line with the law of diminishing marginal utility applied to every
commodity in microeconomic analysis of consumer behaviour, risk-aversion has
been considered the norm in analysing decision making under uncertainty.
Analogous to risk-aversion, risk-seeking was considered as an exception. In
other words, an individual who seeks to maximise his utility must be risk-averse
as he would not consider taking part in a fair game which expected payoff is
lower or equal to the fee to enter it (he would only play games which expected
payoff is greater than its price). It is due to the fact that diminishing marginal
utility of wealth implies that disutility derived from a dollar’s loss is always greater
than the utility derived from a dollar’s gain.

As it was already discussed in the previous chapter, John von Neumann
and Oskar Morgenstern built their Expected Utility Theory basing on the concept
of diminishing marginal utility of wealth. Expected Utility Theory uses a
single-parameter criterion to evaluate possible choices with certain probabilities
attached to them. Utility function attaches subjective utility value to each payoff.
Finally, by comparing the value of expected utility of each choice one can rank
them from the ones having the highest value to the ones having the lowest.
Expected Utility Theory became popular as an analytical tool mainly due to the
fact that the notion of diminishing marginal utility of wealth could be easily
reflected by the use of increasing concave utility function. However, it is
important to point out that the degree of risk aversion cannot be explicitly
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assessed from the curvature of the utility function.

Although von Neumann - Morgenstern Expected Utility Theory was
received quite well, it did not escape criticism. The fiercest opponent of the
theory was Maurice Allais (1911-2010), a French economist and the Nobel
Memorial Prize winner in Economics for contributions to the theory of markets
and efficient utilisation of resources. He devoted significant part of his research
to decision theory. His critique of so called American School and the Expected
Utility Theory had a very important impact on further development of the notion
of utility. In 1953 he discovered a systematic violation of Expected Utility Theory,
to be precise, the violation of independence axiom. The example he created is
known as Allais Paradox. Now | am about to introduce the origin of the Allais
Paradox and its formal description.

One of the most common references concerning the Allais Paradox apart
from the book "Expected Utility Hypotheses and The Allais Paradox -
Contemporary Discussions of Decisions under Uncertainty with Allais’
Rejoinder" (Machina, 1995) is his article published in Econometrica in October
19583. The article was an offspring of a lively debate on the subject at colloquium
held in Paris in May 1952. The article titted "Le Comportement de I'Homme
Rationnel devant le Risque: Critique des Postulats et Axiomes de I'Ecole
Americaine'[ﬂ (Allais, 1953) was preceded by a very interesting editor’s note.
The editor suggested that at the time of publication of the article, its content was
of an extremely subtle sort and it seemed very difficult to reach a general
agreement on the points made by Allais. Furthermore, it was suggested by the
editor that despite most convenient circumstances at the aforementioned
colloquium in Paris, some misunderstandings among the participants were
inevitable and could not be clarified to the satisfactory extent. Hence, the article
was published on the sole author’s responsibility. The note ends with a remark
that even though the points made in the article were very fragile, the editor
believed that the work would be of a valuable nature and would prevent the
isolation of ideas regarding the subject within a very small scientific community.

Maurice Allais starts his article with presenting four factors which in his
opinion should be taken into account by every theory regarding risk in order to be
realistic.

1. Monetary and psychological values should be clearly distinguished.

2. The problem of the distortion of objective probabilities and the appearance
of subjective probabilities.

190wn translation: "The behaviour of rational human beings in the face of risk. The critique of
postulates and axioms of the American school.”
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3. The aspect of mathematical expectation of psychological values.

4. The general properties of the probability distribution of psychological values
l.a. variance.

The last factor (4) is probably the most important when considering theory of
risk. Among the secondary factors the author suggests taking into account the
expenses connected with each gamble (choice), the pleasure derived from the
gamble itself and the magnitude of the minimum sensible®| principle.

In the following part of the article Maurice Allais questions the axiomatic
foundation of, as he refers to it, American school and "the principle of Bernoulli".
He claims that everyone knows that in real world people do not abide the rules of
rationality developed by Americans. The author admits, however, that the views
on how a rational individual should behave are diverse. Nevertheless, he rises
a strong objection to defining rationality as adherence to the particular system of
axioms which is the basis of, as he refers to it, a Bernoulli type formulation of
American school.

According to Maurice Allais, rationality in order to be interesting from the
scientific point of view must be defined in one of the two following ways. The
former approach suggests that rationality could be defined as an abstract entity
by referring to the general criterion of internal consistency which is well defined
in the social sciences. This criterion implies the coherence of desired ends and
the use of appropriate means to achieve them. The latter, however, suggests to
define rationality experimentally by observing the actions of people who are a
priori regarded as acting in a rational manner (defined subjectively by the
researcher). Personally, | am very sceptical when it comes to the the latter
method of defining rationality because the a priori assumption contradicts in a
sense the process itself.

The aforementioned principle of internal consistency implies that the
objective probabilities should be used whenever they exist. Furthermore, it
implies the axiom of absolute preference which stands: when given two choices,
one is certainly preferable if, for all possible outcomes, it yields a greater gain.
Maurice Allais concludes that these two prerequisites (i.e. principle of internal
consistency and the axiom of absolute preference) are less restrictive than the
assumptions of American school. Hence, there exist (at least according to the

2Ominimum sensible - a term introduced by Anglo-Irish philosopher George Berkeley (1685 —
1753) which refers to capacity of human sense-impressions. The main assumption of Berkeley
was that all objects of an immediate perceptions are sense-impressions. However, the capacity
of human senses is finite. Hence, they are not infinitely divisible and must be composed of a finite
number of minimum sensibilia. In other words, there must exist a minimum tangible or a minimum
visible size, beyond which sense cannot perceive.
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definition above) rational types of behaviour which do not obey axioms of
American school.

Maurice Allais performed numerous experiments on individuals who were
considered rational by the public opinion. Results of these experiments showed
that people do not necessarily obey every axiom developed by the American
school. He indicated four classes of facts which in his opinion were of the most
importance regarding this matter. Two of them were connected with gambles of
very small and very large sums of money. The author suggested that it is
important how very cautious people behave while taking part in gambles of small
sums and, on the other hand, what is the behaviour of entrepreneurs when there
is a possibility of encountering a great loss. One of the final remarks found in the
article considers the use of law of large numbers as justification for the
formulation of American school. Maurice Allais stated that for him "it is a pure
illusion”.

3.3 Indifference curves theory and the formulation of Allais
Paradox

Having presented Allais’s attitude towards Expected Ultility Theory and the origin
of Allais Paradox, let us present how the paradox was formulated. However, prior
to that, we are about to explain the concept mentioned earlier in the previous
chapter i.e. notion of indifference curves. This is necessary to show why the
problem formulated by Maurice Allais contradicts the axioms developed by John
von Neumann and Oskar Morgenstern.

Let us for a moment focus on the property of linearity in the probabilities
which is strictly connected to the independence axiom (it will be discussed in the
following paragraphs). Our aim is to graphically illustrate this property. Let
> piU(x;) denote the preference function, where z; indicates the payoff, p;
indicates the probability of achieving particular payoff and finally U(-) indicates
the utility function. Let us consider a set of all lotteries over the fixed outcome
levels such that 1 < 23 < 3. Let us notice that these outcomes can be
represented by the set of all probability triples of the form P = (py, p2, p3) where
p; denotes the probability of the payoff x; and of course > p; = 1. Hence,
p2 = 1 — p; — p3. Now we can represent these three lotteries by the points in the
unit triangle on the plane (p;,ps). Such triangle is called Marschak-Machina
Triangle and is shown in the figure [3 on page [51] (Machina, 1987).

The Marschak-Machina Triangle in this example works in the following way:

e upward movements in the triangle increase p; at the expense of p, (in
other words, the probability is shifted from the outcome x5 up to x3)
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ps = prob(xs)

p1 = prob(xy)
Figure 3: Marschak-Machina Triangle. Source: (Machina, 1987)

¢ leftward movements reduce p; to the benefit of p, (the probability is shifted
from z; up to x,)

e upward and leftward movements (or more generally - northwest
movements) lead to dominating lotteries and would be preferred
accordingly

The indifference curves of the individual on the plane (pi,ps) are given by the
solutions to the following linear equation:

3
U= ZZ%’U(SC@') =pU(z1) + (1 = p1 — p3)U(22) + psU(x3) = constant ~ (3.1)
=1

Hence, the indifference curves will consist of parallel straight lines of slope

where more preferred indifference curves lie to the northwest.
Marschak-Machina Triangle can be used to illustrate different attitudes toward
risks i.e. risk-aversion and risk-seeking. The dashed lines in the figure [4| and
figure [5| on page denote so called iso-expected value lines (these are not
indifference curves!) which represent the solutions to the following equation:

3
T = Zpﬂi = p121 + (1 — p1 — p3)x + p3x3 = constant (3.2)
i—1

It is easy to notice that northeast movements along these lines do not change the
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expected value, however, they increase the probabilities of the outcomes z; and
x5 at the expense of the outcome 2, P The risk interpretation in the Marschak-
Machina triangles should be based on the assumption of fixed outcome levels
(i.e. r1 < x9 < x3). Let us examine two cases:

e RISK AVERSION - utility function U(-) is concave and indifference curves
are steeper than the iso-expected value lines and increases in risk will lead
to lower indifference curves. See figure || for graphical representation.

Figure 4: RISK AVERSION - relatively steep indifference curves. Source:
(Machina, 1987)

e RISK SEEKING - utility function U(-) is convex and indifference curves are
flatter than the iso-expected value lines and increases in risk will lead to
higher indifference curves. See figure [5 on page for graphical
representation.

It can be explained by noticing that:

¢ the slope of the indifference curves is given by

¢ the slope of the iso-expected value lines is given by

To — I

T3 — T2

21They are examples of mean preserving spreads or pure increases in risk.
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Figure 5: RISK SEEKING - relatively flat indifference curves. Source: (Machina,
1987)

e concavity of U(-) implies

U(ZL‘Q) — U(l‘l) > U(I’g) — U(Ig)

T2 — X1 XT3 — T2

whenever z; < 15 < 3.

To sum up, while comparing two different utility functions, the one which is more
risk averse will possess the steeper indifference curves.

Let us remind the definition of independence axiom (5.) in the form
presented in the definition [6|on page [41]

A =X = gh + (L =)A= gha+ (1 —q) A3

If the lottery \, is preferred to the lottery )., than the mixture g\, + (1 — q) s will
be preferred to the mixture g\s + (1 — q)A\3 for all ¢ > 0 and \s.

This axiom is in fact equivalent to linearity in the probabilities. In order to
understand it better let us present the following interpretation.

Let us imagine that an individual is being offered a toss of a special coin. The
probability of this coin landing tails is equal to (1—q) (then the probability of landing
heads is obviously equal to ¢). Whenever it lands tails, the individual obtains a
lottery 3. Prior to the toss, the individual is asked about his preference of two
lotteries A\; and )\, in case of the coin landing heads. Let us consider two possible
outcomes of such situation. If the coin lands tails, the choice of the individual
made before the toss does not matter since he is given the lottery \;. However, if
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it lands heads, the individual is back "in a sense" to a choice between lotteries )\,
and .. Now, if given such choice after it landed heads, the only 'rational’ decision
would be to make the same choice as it was made prior to the toss.

Although the argument above played a major role in adoption of expected utility
concept as a descriptive theory of choice under uncertainty in economics, it also
created a tension between economists. Now let us present the Allais Paradox
itself which is one of the earliest and at the same time best known examples of
systematic violation of independence axiom.

In 1953 Maurice Allais performed an experiment in which he asked
respondents to make two choices (Choice 1 and Choice 2). The first one was to
choose a preferable option from a certain option A; or probable option B;. The
second choice was to choose from two probable options A; and B;. The
experiment is summarised by the table below showing each choice, the
probabilities and potential payoffs (in millions of $).

Let us kindly remark that if the reader is not familiar with the paradox, it is
advisable to make the choice from the presented options before proceeding with
the reading further.

Choice 1 Choice 2
Option A, Option B; Option A, Option B,
Payoff | Probability | Payoff | Probability | Payoff | Probability | Payoff | Probability
1 1,00 1 0,89 0 0,89 0 0,90
0 0,01 1 0,11
5 0,10 5 0,10
Yo=1 Yo=1 Yo=1 Yo=1
E(A;) =1 E(B;) =1,39 E(A;) =0,11 E(B;) = 0,50

Table 3: Original options in Allais Paradox (Payoffs in millions of $). Source: Own
compilation.

Maurice Allais found out that majority of respondents chose option A; from
Choice 1 (Option A; or B;) and option B, from Choice 2 (Option A, or Bs). This
result (i.e. choosing A; and B;) contradicts the independence axiom of Expected
Utility Theory, since according to it, choosing option A; from Choice 1 should
imply the choice of option A, from Choice 2 and analogically choice of option B,
from Choice 1 should imply the choice of option B, from Choice 2. In the
following paragraphs two simple explanations why the independence axiom is
violated will be shown, however, prior to that let us modify the Table [3|so as it is
possible to see the analogy to the example of special coin given above.

The inconsistency in the above example stems from the fact that according to
the independence axiom of Expected Utility Theory, any additional outcomes
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Choice 1 Choice 2
Option A, Option B; Option A, Option B,
Payoff | Probability | Payoff | Probability | Payoff | Probability | Payoff | Probability

1 0,89 1 0,89 0 0,89 0 0,89

1 0,11 0 0,01 1 0,11 0 0,01

5 0,10 5 0,10
Yo=1 Yo=1 Yo=1 Yo=1

E(A) =1 E(B;) = 1,39 E(A4;) = 0,11 E(B,) = 0,50

Table 4: Modified options in Allais Paradox (Payoffs in millions of $). Source: Own
compilation.

(which are identical) added to each possible choice should not affect in any way
the ultimate choice in a given lottery (gamble). These additional outcomes
should "cancel out" in a sense speaking informally. It can be easily noticed by
looking at the modified version of the original choices presented in the Table [4]
When the fourth row from the Table [4] is examined, it can be concluded that in
options A; and B; from Choice 1 exists the same constituent i.e. payoff=1 with
probability=0,89. Similar observation can be made about the Choice 2. Options
As and B, from this choice also include identical constituent which in this case is
payoff=0 with probability=0,89. When it is assumed that these constituents
"cancel out", the individual is left with exactly the same options in both choices
(Choice 1 and Choice 2) which is illustrated by the Table [5]

Choice 1 Choice 2
Option A, Option B, Option A, Option B,
Payoff | Probability | Payoff | Probability | Payoff | Probability | Payoff | Probability
1 0,11 0 0,01 1 0,11 0 0,01
5 0,10 5 0,10

Table 5: "Cancelled out" options in Allais Paradox (Payoffs in millions of $).
Source: Own compilation.

Hence, the individual should not have any inclination to change the preferred
option in Choice 2. In other words, to stay consistent, the choice of option A,
should imply the choice of option A, and analogically the choice of option B;
should imply the choice of option B;. The experiment showed that this is not
preserved, hence, the independence axiom is violated.

Now let us proceed with a more formal explanations of why independence
axiom is violated. The first explanation will utilise the tables above and compare
some inequalities with utility functions. The majority of respondents chose option
Ay in Choice 1 and option B, in Choice 2. The expected utilities of options A; and
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B; can be expressed by the following inequalities:

Ul) > 0,01-U(0)+0,89-U(1)+0,10- U(5) (3.3)
\\/ ~ ~~ -
Option A; Option By

The above equation (3.3) is based on the table [3] However, we will simplify it
according to the table 5}

0,11-U(1) > 0,01-U(0)+0,10-U(5) (3.4)
%’_/ Vv
Option A; Option B;

Analogically, the expected utilities of options A, and B, can be expressed by the
following inequalities:

0,89-U(0) +0,11-U(1) < 0,90-U(0)+0,10 - U(5) (3.5)
Opti:);AQ Opti?)?\Bg

The simplification according to the table [5]

0,11-U(1) < 0,01-U(0)+0,10-U(5) (3.6)
%’_/ TV
Option As Option Ba

The inconsistency in the above equations can be noticed by looking at the
inequalities and They both are the same and the only difference is that
the inequality sign is reversed. Hence, it shows the violation of independence
axiom of the Expected Utility Theory. This explanation requires additional remark
that all of the above inequalities are valid regardless of the type of utility function
(risk-averse, risk-neutral, risk-seeking). This is due to the fact that the type of
risk propensity is determined by the second derivative of the utility function
(which can be negative, zero or positive for risk-averse, risk-neutral and
risk-seeking individuals respectively) which is not present in any of the above
inequalities. Hence, it is concluded that the the axiom is violated regardless of
the type of utility function (which by definition must be unique up to increasing
monotonous transformation).

The second formal explanation is connected with previously explained
technique of indifference curves. Firstly, let us notice that in the Allais Paradox
there are only three possible payoffs (considering all possible options Ay, By, A
and B, from both choices, the only possible payoffs are: 0Om $, 1m $ and 5m $)
with different probabilities. Therefore, let the set of fixed outcome levels be
defined as follows {zi, x5, 23} = {3$0,%1 000 000, $5 000 000}. Then, the four
options A;, By, A; and B, form a parallelogram in the (p1, p2) triangle as shown
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in the figure [

Figure 6: Expected utility indifference curves. Source: (Machina, 1987)

On the ground of The Expected Utility Theory, the preference of Option A; in the
Choice 1 indicates that the indifference curves should be relatively steep and,
therefore, it implies the preference of option A, in the Choice 2. Analogically, if
Option B, is selected by the individual, than the indifference curves are relatively
flat and imply the selection of option B, in the second choice. The already
discussed result of Allais experiment, which shows the systematic violation of
independence axiom, implies that indifference curves are not parallel but rather
fan out in this case. This fact is presented graphically in the figure

1

D3

04, D1 As 1

Figure 7: "Fanning out" indifference curves. Source: (Machina, 1987)

57



3.4 Various psychological causes of Expected Utility
Hypothesis violation

Allais Paradox is not the only systematic violation of Expected Utility Hypothesis
which is based on risk aversion. Since the publication of the paradox, many
different violations have been noted on various grounds including psychology
(Mongin, 1997) (Rios, et al. 1997). Only a few most important concepts from the
literature will be presented in this thesis together with a brief description i.a. The
Certainty Effect, The Big Amount Effect, The Common Consequence Effect, The
Common Ratio or Isolation Effect, The Reverse Common Ratio Effect, The
Response Mode Effect and The Framing Effect.

3.4.1 The Certainty Effect

The Certainty Effect together with The Common Consequence Effect and The
Common Ratio Effect are probably the most recognisable violations of the
Expected Utility Hypothesis apart from Allais Paradox. The Certainty Effect was
developed by Daniel Kahneman (1934- ) - psychologist and behavioural
economists, together with Amos Tversky (1937-1996) - a psychologist, in 1979.
Khaneman and Tversky mainly known for the development of Prospect Theory
(which lies beyond the scope of this thesis) conducted a comprehensive
experimental research close to the concept of Allais Paradox. Not only did their
research verify Allais Paradox but it also led them to a new conclusion. The most
characteristic feature of they research was the fact that some options in
presented questions contained almost certain instead of fully certain payoffs.
The authors concluded from the research that there exists a tendency which
causes individuals to underweight probable payoffs when it is possible to
compare them with certain or at least almost certain payoffs. They called such
tendency - the certainty effect. It reinforces risk aversion when available options
contain only positive payoffs and, on the other hand, reinforces risk seeking
when available options contain non-positive (zero) payoffs. Let us present the
example from Khaneman and Tversky research in the table [6] on page [59 which
illustrates The Certainty Effect (payoffs in §).
The rules of the problem presented in the table above were exactly the same as
in Allais Paradox. The result was also similar as majority of respondents
selected options A; and B, as in Allais Paradox. The choice A; together with B,
violated Expected Utility Theory due to the certainty effect as payoff in option A;
was certain.

The certainty effect is not limited to cases in which the payoff in available
options is absolutely certain but it can also be extended into cases in which the
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Choice 1 Choice 2
Option A, Option B; Option A, Option B,
Payoff | Probability | Payoff | Probability | Payoff | Probability | Payoff | Probability
3000 1,00 0 0,20 0 0,75 0 0,80
4000 0,80 3000 0,25 4000 0,20
Yo=1 Yo=1 Yo=1 Yo=1

Table 6: The Certainty Effect (1) based on Khaneman and Tversky problems 3
and 4 (Kahneman and Tversky, 1979). Source: Own compilation.

payoff of available options is almost certain. The next table (table [7| below)
presents another problem from Khaneman and Tversky research which
illustrates the almost certainty effect.

Choice 1 Choice 2
Option A Option B, Option A, Option B,
Payoff | Probability | Payoff | Probability | Payoff | Probability | Payoff | Probability
0 0,10 0 0,55 0 0,998 0 0,999
3000 0,90 6000 0,45 3000 0,002 6000 0,001
Yo=1 Yo=1 >Yo=1 >Yo=1

Table 7: The Almost Certainty Effect (2) based on Khaneman and Tversky
problems 7 and 8 (Kahneman and Tversky, 1979). Source: Own compilation.

Similarly to the previous example, the respondents again selected the pair of
options A; and B,. The Expected Utility Hypothesis was violated due to the
almost certainty effect. Let us look closer into the presented example. It is worth
noticing that while in the Choice 1 in Option A; the only positive payoff was
almost certain with probability 0,90 and in Option B; the only positive payoff had
probability 0,45, the only positive payoffs in Choice 2 (both in option A, and B,)
were merely probable with probabilities 0,002 and 0,001 respectively. What
might not be visible at first sight is the fact that probabilities of positive payoffs in
Choice 2 were simply scaled down (in proportion 1/450) probabilities of positive
payoffs in Choice 1, hence, it should not affect the choice of respondents
according to Expected Utility Hypothesis.

3.4.2 The Big Amount Effect

The Big Amount Effect is probably the most commonly observed effect in
everyday life. It is mainly connected with national lotteries, gambling and, on the
other hand, insurance. The effect was firstly described by Milton Friedman (1912
— 2006) - American economist, and Leonard J. Savage (1917 — 1971) -
American mathematician. However, it was later elaborated by aforementioned
Daniel Kahneman and Amos Tversky (Weber, 2008). Kahneman and Tversky
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stated that people tend to overestimate the expected value of lotteries which
offer small probability of winning large amounts of money. A perfect example of
such behaviour is buying a lottery ticket for national IotteryEf] where the odds of
winning the highest prize are 1 to 13 983 816. This effect reinforces risk-seeking
attitude and can be an explanation of why individuals willingly pay a fee (or
equivalently - buy lottery tickets) which price is higher than the actual expected
value of the lottery. Friedman and Savage said about such individual that he
prefers large chance of losing a small amount (the lottery fee/ticket) and small
chance of winning a big amount (the prize of a lottery) to avoidance of both of
these risks (to keep the price of a lottery fee/ticket). In other words, he willingly
chooses uncertainty to certainty in hope of winning a big amount (prize of a
lottery), even though he is aware of the fact that on average the expected value
of the lottery is lower than the price of a fee/ticket to the lottery itself. The same
can be said about individuals who buy fire insurance on house. In such situation,
an individual prefers paying a fixed sum (the insurance premium) to being
exposed to a small chance of a big loss (the value of the house) and a large
chance of no loss. In other words, the individual in this case prefers certainty to
uncertainty in order to avoid potential big loss, even though, he is aware of the
fact that the insurance premium is, on average, greater than the expected value
of potential loss (burning of the house).

3.4.3 The Common Consequence Effect

The Common Consequence Effect is a general empirical pattern, a specific
example of which is Allais Paradox. Let us go back to the tables describing the
paradox in order to explain what the common consequence effect really is. The
table [9] (a copy of table 4] from page which was the modification of table [g] (a
copy of table [3| from page showed us the existence of identical implicit
payoffs hidden in the options of each choice (payoff=1 with probability=0,89 for
Choice 1 and payoff=0 with probability=0,89 for Choice 2). These payoffs are
called implicit since in the original table |8| they are not showed explicitly - they
are visible only after the slight modification in table 9. Now, let us look closer at

inequalities[3.7and (both inequalities being a copy of inequalities [3.4]and
from page [56) below.

0,11-U(1) > 0,01-U(0)+0,10-U(5) (3.7)
—— ~ ~~ o
Option A Option B;

22The example considered here is based on Polish national lottery "Lotto"
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0,11-U(1) < 0,01-U(0)+0,10-U(5) (3.8)
N—— ~ ~ -
Option Ao Option Bg

They are simplified versions of inequalities and (both inequalities being
a copy of inequalities [3.3and [3.5|from page respectively.

Ul) > 0,01-U(0)+0,80-U(1)+0,10- U(5) (3.9)
\\/ \ -~ J
Option A; Option By
0,89-U(0)+0,11-U(1) < 0,90-U(0)+0,10-U(5) (3.10)

Option As Option Bg

Inequality was achieved by subtracting 0,89 - U(1) from inequality [3.9, and
similarly, inequality was achieved by subtracting 0,89 - U(0) from inequality
[3.10] The subtracted elements i.e. 0,89 - U(1) and 0,89 - U(0) are called common
consequences. They can be interpreted as follows. The common consequence
with higher expected value (in our case i.e. 0,89 - U(1)) makes respondents risk-
averse in Choice 1 while the common consequence with lower expected value
(i.e. 0,89 - U(0)) in Choice 2 makes them risk-seekers.

Choice 1 Choice 2
Option A, Option B, Option A, Option B,
Payoff | Probability | Payoff | Probability | Payoff | Probability | Payoff | Probability
1 1,00 1 0,89 0 0,89 0 0,90
0 0,01 1 0,11
5 0,10 5 0,10
=1 Y=1 =1 =1
Table 8: Original options in Allais Paradox (Payoffs in millions of $). Source: Own
compilation.
Choice 1 Choice 2
Option A Option B, Option A, Option B,
Payoff | Probability | Payoff | Probability | Payoff | Probability | Payoff | Probability
1 0,89 1 0,89 0 0,89 0 0,89
1 0,11 0 0,01 1 0,11 0 0,01
5 0,10 5 0,10
Yo=1 Yo=1 >Yo=1 >o=1

Table 9: Modified options in Allais Paradox (Payoffs in millions of $). Source: Own

compilation.
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3.4.4 The Common Ratio or Isolation Effect

The Common Ratio or Isolation Effect is strictly connected with The Certainty
Effect. The empirical evidence of the common ratio effect was proven in the
research of Kahneman and Tversky mentioned earlier while discussing the
certainty effect. It has been noticed by the researchers that majority of
individuals tend to choose certain or almost certain option in the original version
of presented problem and risky option in the new problem which is in fact a
slightly modified version of the original problem with scaled down probabilities.
Numerical examples of the common ratio effect are very similar to the research
carried out by Kahnemann and Tversky, hence, only the theoretical background
concerning the effect will be presented.

Let a problem be constructed as Allais Paradox i.e. the problem consists
of two choices - Choice 1 between two options: A; and B;; and Choice 2
between two options: A, and B;. Let an option A; from Choice 1 consist of
certain outcome X or let A; consist of two outcomes: almost certain outcome X
and 0. Secondly, let an option B; consist of two probable (neither certain nor
almost certain) outcomes: Y and 0. Finally, we require that Y > X > 0 and
1>px > % > py > 0 where px and py denote probabilities of outcomes X and
Y respectively. The second choice (Choice 2) and options associated with it (A,
and B,) are created by scaling down the probabilities of X and Y from the
Choice 1 by the same proportion k£ such that the ratio ’;j;—ﬁ remains the same
(common) in both choices (Choice 1 and Choice 2). See the table below.
Then, according to Expected Utility Theory, the respondents should not change
their choices between Choice 1 and Choice 2.

Choice 1 Choice 2
Option A, Option B; Option A, Option B,
Payoff | Probability | Payoff | Probability | Payoff | Probability | Payoff | Probability
X Px Y Py X | px=k-px Y | py=k-py
0 1 —px 0 1 —py 0 1 —py 0 1 —py
=1 Yo=1 =1 Yo=1

Table 10: The Common Ratio or Isolation Effect. Source: Own compilation.

3.4.5 The Reverse Common Ratio Effect

Let the problem be constructed in a similar way to the problem described above
in the description of The Common Ratio Effect. Let an option A; from Choice
1 consist of certain outcome X and let an option B; from the same Choice 1
consist of two probable outcomes: Y and 0. We require that Y > X > 0. Then,
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the Choice 2 is constructed analogically to the previous case by scaling down

the probabilities of outcomes X and Y by the same proportion such that the

ratio fj;)yf remains the same (common) in both choices (Choice 1 and Choice 2).

However, we require that probabilities after transformation (scaled-down) p! and
1

py meet the following requirement: 5 > p'y > pjy. > 0. According to Professor
Pavlo Blavatskyy (Blavatskyy, 2010), when the problem is constructed in such a
way, respondents show exactly the opposite behaviour than this described in the
common ratio effect above. Hence, the name Reverse Common Ratio Effect. In
other words, the majority of respondents choose risky option in original version
of the problem (Choice 1) and safer option in modified version (Choice 2) with
scaled down probabilities.

Blavatskyy in his research also found a correlation between the amount of
certain option and the expected value of probable option. He concluded that
respondents are pre-programmed in a sense since their decisions depend upon
this correlation. When the amount of certain option is slightly lower than the
expected value of probable option, then the majority of respondents chooses
certain option in Choice 1. On the other hand, if the amount of certain option is
far lower than the expected value of risky option, the majority of respondents

chooses risky option.

3.4.6 The Response Mode Effect

Having presented The Certainty Effect and The Big Amount Effect, let us present
The Response Mode Effect observed by Lichtenstein (1971) and Slovic (1973).
They performed many hypothetical experiments and empirical research in actual
casinos. What they found out was another systematic violation of Expected
Utility Theory which they called The Response Mode Effect. The scientists
observed that majority of respondents pay more attention to probabilities of
particular payoffs or to the certainty effect when they are asked to rank or
choose from two competing gambling options. However, when they are asked to
bid or ask money for the same options they tend to pay more attention to the
amount of these payoffs or to the big amount effect. As a result, in the first option
they choose the most probable payoff even though the overall expected value of
the chosen option might be lower than of the competing one. When the latter
case is considered, they bid or ask a bigger amount of money for the option with
the highest payoff despite its expected value which might be lower than of the
other option. The authors explain this behaviour patter by pointing out that
human information processing system focuses more on probability while ranking
or choosing from competing probable options and more on payoffs when
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assessment of monetary value is considered.

The reversal of preference was confirmed in 1990 by Slovic, Kahneman
and Tversky. They showed a simple example in which respondents were asked
to choose from two options - option A called "P-bet" and option B called "$-bet". In
the former option the respondents had a chance with probability 28/36 ~ 0, 78 to
win $10 or nothing ($0) otherwise (with remaining probability 1 — (28/36) ~ 0, 22).
The latter option involved a chance with probability 3/36 ~ 0, 08 of winning $100 or
nothing ($0) otherwise (with remaining probability 1 — (3/36) ~ 0,92). Let us point
out that expected values of option A (P-bet) and option B ($-bet) were 7,78 and
8,33 respectively (E(A) = 7,78 < E(B) = 8,33). Despite the fact that expected
value of the former option was lower than of the latter option, the majority of
respondents chose option A. However, when asked about the lowest selling price
of the same options, the majority of respondents stated a higher price for option
A even though variance of option B was many times higher that this of option A
(Var(B) = 763,89 > Var(A) = 17,8).

3.4.7 The Framing Effect

Another reason for violating the Expected Utility Theory is The Framing Effect
researched by many authors i.a. Slovic (1969), Payne and Braunstein (1971),
Khaneman and Tversky (1979), Hershy and Schoemaker (1980). Let us present
this effect on the example of Khaneman an Tversky from 1979. The respondents
were asked to imagine that they were given $1000 regardless of they current
wealth. Next, they were asked to choose between the certain (sure) payoff of
$500 and a chance (gamble) of getting $1000 with a probability 0,5 or nothing
($0) with remaining probability 1-0,5=0,5. Majority of the respondents chose the
sure payoff. Secondly, the respondents were asked to imagine that they were
given $2000 regardless of their current wealth. After that they were asked to
make a choice between a certain (sure) loss of $500 or a chance (gamble) of
losing $1000 with a probability of 0,5 or losing nothing at all otherwise. This time,
majority of the respondents preferred the gamble. When the both problems are
compared, its is easy to notice that the second problem is not much different from
the first one when financial position of the respondents is concerned, however,
the choices they made are different. Khaneman and Tversky concluded that it is
due to the framing effect which causes people to be risk-averse in case of positive
payoffs and risk-seeking in case of the negative ones. This is a very important
psychological notion which affects decision making.
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Conclusions

The brief description of the most important psychological causes of Expected
Utility Theory violation concludes the thesis. It was mainly focused on presenting
the roots of the Expected Utility Hypothesis (St. Petersburg Paradox and
Pascal’s Wager) and most important and well known notions associated with it
(Von Neumann—Morgenstern Expected Utility Theory and Allais Paradox).
Several reasons for such a structure of the thesis can be found. First and
foremost, the topic of Expected Utility Hypothesis is extremely broad - ranging
from St. Petersburg Paradox discovered over three hundred years ago to a fairly
new Cumulative Prospect Theory (CPT) developed in 1992 by Amos Tversky
and Daniel Kahneman. Hence, the scope of this work must have been limited in
order to avoid potential superficial treatment of the subject. It was decided to
focus on the early development of the theory and its most recognised critique
due to a very important characteristic of the literature concerning the problem.
During the research and literature overview performed prior to writing this thesis,
it was found that despite the wide range of available English literature on the
topic, it is characterised by high complexity and is mainly directed to highly
specialised researchers and scientists in this field (e.g. (Schoemaker, 1980),
(Hagen and Wenstop, 1984), (Krelle, 1984)). Substantial majority of the articles
and books found, assumed that the reader is absolutely familiar with all the
concepts mentioned in this thesis. Furthermore, no scientific publication was
found concerning the basics of the subject or covering most of the problems
included in the thesis in a single work. Moreover, the first publications of the
notions mentioned in this work were usually a bit archaic or consisted of complex
and meticulous mathematical considerations. Therefore, it was considered a
worthy challenge to gather, analyse, synthesise and systematise the selected
literature on the subject in such a way to present a comprehensive, thorough and
accessible to a less experienced or knowledgeable readers in this field a worth
reading material. Such a task required introduction of some elementary
mathematical notions, however, it was limited only to the essential ones in order
to preserve the economic perspective of the thesis.

Due to the chosen approach of writing this work, some very important,
and at the same time interesting notions, were not included. One of them was
Subjective Expected Utility model axiomatised by an American mathematician
and statistician Leonard Jimmie Savage (1917 - 1971) which relied on two
concepts: the utility function (as in Expected Utility Theory) and a personal
probability distribution (based on Bayesian probability theory). However, this
model was also questioned and challenged by another paradox - Ellsberg
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Paradox which violated its postulates. Finally, very important models of
Kahneman and Tversky such as Prospect Theory and Cumulative Prospect
Theory could not have been described in detail in this thesis.

The Expected Utility Hypothesis topic is still being investigated and
developed further by economists, behavioural economists and mathematicians.
Furthermore, many doctoral dissertation around the world are focused on
developing the idea of expected utility. However, it seems like it is not in the
mainstream of the current economic researches and is not considered a very
popular subject outside United States of America. For instance, in Poland, only a
handful of publications regarding this notion can be found and, what is more,
they rarely extend or try to develop it further. One of the reasons for that might
be the relatively young age of the theory and constant changes being alternately
introduced and challenged by the scientists. However, it is worth noticing that the
notion of expected utility yields great potential in applying it to practical economic
problems (hence, it is a subject of research of behavioural economics).

The thesis has some unique aspects such as its particular scope and
composition. It presents the subject in a comprehensive and logical way. Not
many works present the problem by relating to the roots of it. However, this work
gives the reader a complete background overview by referring to the earliest
notions of ’infinite gain’ such as the problem of Pascal’s Wager. Subsequently, it
considers the early development of Expected Utility Hypothesis with St.
Petersburg Paradox. Finally, description of contemporary psychological aspects
related to the violation of core assumptions of the theory is presented. They
yield a promising future consequences and development of the theory. The
thesis presents the problem in a modern setting and gives a comprehensive
guidance for readers intending to sort out their knowledge on the subject and
prepare for further reading regarding Expected Utility Hypothesis. This work is
not the end of my interest in this subject and hopefully | will have a chance to
research the problem further in the near future.
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